Status and Perspective of The CEPC

王建春 (IHEP, CAS) For the CEPC Study Group 海峽兩岸尖端探測器與技術研討會 2024.06.17-19, Taoyuan/Taipei

The Circular Electron Positron Collider (CEPC)

- The CEPC was proposed by the Chinese HEP community in 2012 right after the Higgs discovery.
 It aims to start operation in 2030s, as a Higgs / Z / W factory in China.
- To produce Higgs / W / Z / top for high precision Higgs, EW measurements, studies of flavor physics & QCD, and probes of physics BSM.
- □ It is possible to upgrade to a *pp* collider (SppC) of \sqrt{s} ~ 100 TeV in the future.

Major Milestones

Global HEP Consensus on Higgs Factories

The scientific importance and strategical value of e⁺e⁻ Higgs factories is clearly identified.

China JAHEP Japan

2013, 2016: China Xiangshan Science Conference concluded that CEPC is the best approach and a major historical opportunity for the national development of accelerator-based high-energy physics program.

2017: Japan Association of High Energy Physicists (JAHEP) proposes to construct A 250 GeV center of mass ILC promptly as a Higgs factory.

2020: European Strategy for Particle Physics, An electron-positron Higgs factory is the highest priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.

2022, ICFA "reconfirmed the international consensus on the importance of a Higgs factory as the highest priority for realizing the scientific goals of particle physics", and expressed support for the above-mentioned Higgs factory proposals

Pathways to Innovation and Discovery in Particle Physics

Report of the Particle Physics Project Prioritization Panel 2023

Recommendation 6

Convene a targeted panel with broad membership across particle physics later this decade that makes decisions on the US accelerator-based program at the time when major decisions concerning an off-shore Higgs factory are expected, and/or significant adjustments within the accelerator-based R&D portfolio are likely to be needed. A plan for the Fermilab accelerator complex consistent with the long-term vision in this report should also be reviewed.

The panel would consider the following:

1. The level and nature o US contribution in a specific Higgs factory including an evaluation of the associated schedule, budget, and risks once crucial information becomes available.

2.Mid- and large-scale test and demonstrator facilities in the accelerator and collider R&D portfolios.

3.A plan for the evolution of the **Fermilab accelerator complex** consistent with the longterm vision in this report, which may commence construction in the event of a more favorable budget situation.

P5 report, USA, 2023

Higgs Factory Proposals

CEPC has strong advantages among mature e⁺e⁻ Higgs factories (design report delivered)

CEPC Accelerator white paper for Snowmass21, arXiv:2203.09451

Versus FCC-ee

- Earlier data: collisions expected in 2030s (vs. ~ 2040s)
- Large tunnel cross section (ee & pp coexistence)
- Lower construction cost

Versus Linear Colliders

- Higher luminosity / precision for Higgs & Z
- Potential upgrade for pp collider

CEPC Accelerator TDR

Domestic Civil Engineering Cost Review, June 26, 2023 06/17/2024

Endorsed by CEPC IAC Oct 29-31, 2023

CEPC Layout and Design Essentials

High Energy Photon Source (HEPS)

Platform for Key Technology R&D

Vacuum assembly & coating

- Mechanics and alignment
- Beam test facility

Key Components and Prototype R&D

✓ Specification Met

Damping ring

		Prototype Manufact	actured	
		Accelerator	Fraction	
		✓ Magnets	27.3%	
		✓ Vacuum	18.3%	
	Booster	✓ RF power source	9.1%	
		✓ Mechanics	7.6%	
A		 Magnet power supplies 	7.0%	
	Position Ring	✓ SC RF	7.1%	
		 Cryogenics 	6.5%	
		 Linac and sources 	5.5%	
-		 Instrumentation 	5.3%	
		Control	2.4%	
		Survey and alignment	2.4%	
		 Radiation protection 	1.0%	
	Key technology R&D spans over all components listed in the CEPC CDR	SC magnets	0.4%	
	Roy toorniology had opano over an compendito noted in the OEL O ODIC			

06/17/2024

0.2%

- □ CEPC received ~ 260 Million CNY for R&D from MOST, CAS, NSFC, ...
- □ Large amount of key technologies validated in other projects by IHEP: BEPCII, HEPS, ...

CEPC R&D ~ 40% cost of acc. components	 High efficiency klystron SRF cavities Positron source High performance accelerator 	 Novel magnets: Weak field dipole, dual aperture magnets Extremely fast injection/extraction Electrostatic deflextor MDI
BEPCII / HEPS ~ 50% cost of acc. components	 High precision magnet Stable magnet power source Vacuum chamber with NEG coating Instrumentation, Feedback system 	 Survey & Alignment Ultra stable mechanics Radiation protection Cryogenic system MDI

~10% missing items consist of anticipated challenges in the machine integration, commissioning etc to be completed by 2026, and the corresponding international contributions.

CEPC Operation Plan

O	peration mode	ZH	Z	W+M-	tī
	\sqrt{s} [GeV]	~240	~91	~160	~360
R	un Time [years]	10	2	1	~5
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
0 MW	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	13	60	4.2	0.6
	Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
o mw	∫ <i>L dt</i> [ab⁻¹, 2 IPs]	22	100	6.9	1
K	Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

Both 50 MW and $t\bar{t}$ modes are currently considered as upgrades

Physics Opportunities @ CEPC

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs physics at the CEPC'

Fenfen An(安芬芬)⁴²³ Yu Bai(白羽)⁹ Chunhui Chen(陈春晖)²³ Xin Chen(陈新)⁵ Zhenxing Chen(陈振兴)³ Joao Guimaraes da Costa⁴ Zhenwei Cui(崔振厳)³ Yaquan Fang(方亚泉)^{4,6,34;1)} Chengdong Fu(付成栋)⁴ Jun Gao(高俊)¹⁰ Yanyan Gao(高艳彦)²² Yuanning Gao(高原宁)³ Shaofeng Ge(葛韶锋)^{15,29}

Jiayin Gu(顾嘉荫)^{13,2)} Fangyi Guo(郭方毅)^{1,4} Jun Guo(郭军)¹⁰ Tao Han(韩海)^{5,31} Shuang Han(韩爽)⁴ Hongjian He(何红建)^{11,10} Xianke He(何显柯)¹⁰ Xiaogang He(何小刚)^{11,10,20} Jifeng Hu(胡继峰)¹¹ Shih-Chieh Hsu(徐士杰)³² Shan Jin(金山)⁸ Maoqiang Jing(荆茂强)^{4,7} Susmita Jyotishmati³³ Ryuta Kiuch⁴ Chia-Ming Kuo(郭家铭)²¹ Peizhu Lai(赖培筑)²¹ Boyang Li(李博扬)⁵ Congqiao Li(李聪乔)³ Gang Li(李刚⁴³⁴³⁾ Haifeng Li(李海峰)¹² Liang Li(李亮)¹⁰ Shu Li(李数)^{11,10} Tong Li(李通)¹² Qiang Li(李强)³ Hao Liang(梁浩)⁴⁶ Zhijun Liang(梁志均)⁴ Libo Liao(廖立波)⁴ Bo Liu(刘波)^{4,23} Jianbei Liu(刘建北)¹ Tao Liu(刘涛)¹

Zhen Liu(刘真)^{26,30,4)} Xinchou Lou(娄辛丑)^{4,6,33,34} Lianliang Ma(马连良)¹² Bruce Mellado^{17,18} Xin Mo(莫欣)⁴ Mila Pandurovic¹⁶ Jianming Qian(钱剑明)^{24,5)} Zhuoni Qian(钱卓妮)¹⁹ Nikolaos Rompotis²¹ Manqi Ruan(阮曼奇)^{4,6)} Alex Schuy³² Lianyou Shan(单连友)⁴ Jingyuan Shi(史静远)⁹ Xin Shi(史欣)¹ Shufang Su(苏淑芳)²⁵ Dayong Wang(王大勇)³ Jin Wang(王锦)⁴ Liantao Wang(王连涛)²⁷ Yifang Wang(王貽芳)^{4,6} Yuqian Wei(魏彧骞)⁴ Yue Xu(许悦)⁵ Haijun Yang(杨海军)^{10,11} Ying Yang(杨迎)⁴ Weiming Yao(姚为民)²⁸ Dan Yu(于丹)⁴ Kaili Zhang(张凯栗)^{4,6,8)} Zhaoru Zhang(张照茹)⁴

CEPC Higgs White Paper

University of Chinese Academy of Science (UCAS), Beijing 100049, China School of Nuclear Science and Technology, University of South China, Hengyang 421001, China ⁸Department of Physics, Nanjing University, Nanjing 210093, China Department of Physics, Southeast University, Nanjing 210096, Chin ¹⁰School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai 200240, China Tsung-Dao Lee Institute, Shanghai 200240, China

+ o(100) journal/arXiv papers

"School of Pl

7) E-mail: liantaow@uchicag

8) E-mail: zhangkl@ihep.ac.c

in attribution to the author(s) a and the Institute of High Energy

. . .

lishing Ltd

Received 9 November 2011 Scientific Significance quantified by CEPC physics studies, via full * Supported by the National Science Studio of the Ten Thou tion Grant (Y4545170Y2); Key entific Project (113111KYSB20 simulation/phenomenology studies: (Y3515540U1): the National 101 ter for Fundamental Physics (M

- Higgs: Precisions exceed HL-LHC ~ 1 order of magnitude
- EW: Precision improved from current limit by 1-2 orders Content from this
 - Flavor Physics, sensitive to NP of 10 TeV or even higher ٠
 - Sensitive to varies of NP signal ٠

Table 2.1: Precision of the main parameters of interests and observables at the CEPC, from Ref. [1] and the references therein, where the results of Higgs are estimated with a data sample of 20 ab^{-1} . The HL-LHC projections of 3000 fb^{-1} data are used for comparison. [2]

	Higgs			W, Z and top	
Observable	HL-LHC projections	CEPC precision	Observable	Current precision	CEPC precision
M_H	20 MeV	3 MeV	M_W	9 MeV	0.5 MeV
Γ_H	20%	1.7%	Γ_W	49 MeV	2 MeV
$\sigma(ZH)$	4.2%	0.26%	M _{top}	760 MeV	$\mathcal{O}(10)$ MeV
B(H ightarrow bb)	4.4%	0.14%	M_Z	2.1 MeV	0.1 MeV
$B(H \to cc)$	-	2.0%	Γ_Z	2.3 MeV	0.025 MeV
$B(H \to gg)$	-	0.81%	R_b	$3 imes 10^{-3}$	$2 imes 10^{-4}$
$B(H \to WW^*)$	2.8%	0.53%	R_c	$1.7 imes 10^{-2}$	$1 imes 10^{-3}$
$B(H \rightarrow ZZ^*)$	2.9%	4.2%	R_{μ}	$2 imes 10^{-3}$	$1 imes 10^{-4}$
$B(H\to\tau^+\tau^-)$	2.9%	0.42%	$R_{ au}$	$1.7 imes 10^{-2}$	$1 imes 10^{-4}$
$B(H o \gamma \gamma)$	2.6%	3.0%	A_{μ}	$1.5 imes 10^{-2}$	$3.5 imes 10^{-5}$
$B(H \to \mu^+ \mu^-)$	8.2%	6.4%	$A_{ au}$	$4.3 imes10^{-3}$	7×10^{-5}
$B(H \to Z\gamma)$	20%	8.5%	A_b	2×10^{-2}	2×10^{-4}
B upper($H \rightarrow inv.$)	2.5%	0.07%	$N_{ u}$	$2.5 imes 10^{-3}$	$2 imes 10^{-4}$

06/17/2024

100

150 Mag^{recoil}[GeV]

50

200

250

3000

200

1000

Conceptual Detector Designs

Requirements of Detector and Key Technologies

Sub-detector	Key technology	Key Specifications
Silicon vertex detector	Spatial resolution and materials	$\sigma_{r\phi}\sim 3~\mu{\rm m}, X/X_0 < 0.15\%$ (per layer)
Silicon tracker	Large-area silicon detector	$\sigma(\frac{1}{p_T}) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{p \times \sin^{3/2} \theta} (\text{GeV}^{-1})$
TPC/Drift Chamber	Precise dE/dx (dN/dx) measurement	Relative uncertainty 2%
Time of Flight detector	Large-area silicon timing detector	$\sigma(t) \sim 30 \text{ ps}$
Electromagnetic	High granularity	EM energy resolution $\sim 3\%/\sqrt{E({\rm GeV})}$
Calorimeter	4D crystal calorimeter	Granularity $\sim 2 \times 2 \times 2 \text{ cm}^3$
Magnet system	Ultra-thin	Magnet field $2 - 3$ T
	High temperature	Material budget $< 1.5X_0$
	Superconducting magnet	Thickness $< 150 \text{ mm}$
Hadron calorimeter	Scintillating glass	Support PFA jet reconstruction
	Hadron calorimeter	Single hadron $\sigma_E^{had} \sim 40\%/\sqrt{E({\rm GeV})}$
		Jet $\sigma_E^{jet} \sim 30\%/\sqrt{E({\rm GeV})}$

These specifications continue to be optimized

International Efforts on Detector R&D

Technologies for Ref-TDR

System	Technologies				
Beam pipe	Φ 20 mm				
LumiCal	SiTrk+Crys	tal			
Vertex	CMOS+Stitching	CMOS+Stitching CMOS		SOI	
	SPD ITrk				
Treation	Pixelated T	PC	PID	Drift Chamber	
Iracker		SSD	OTrk	SPD OTrk	
	AC-LGAD OTrk		LGAD ToF		
FOAL	4D Crystal Bar		Stereo Crystal Bar		
ECAL	GS+SiPM	PS+Si	PM+W	SiDet+W	
HCAL	GS+SiPM+Fe	PS+Si	iPM+Fe RPC+Fe		
Magnet	LTS	LTS		HTS	
Muon	PS Bar+SiPM		RPC		
TDAQ	Conventional		Software Trigger		
BE electr.	Common		In	dependent	

For Comparison

- Prepare TDR of a reference detector, aiming for domestic endorsement, as recommended by the CEPC IAC
- Will continue to seek for better technologies, and decide the final detectors within the CEPC international collaborations

Silicon Pixel Vertex Detector

Looking into stitching technology

Goal: $\sigma(IP) \sim 5 \ \mu m$ for high P

Key specifications:

- Single point resolution ~ 3 µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

 $\begin{array}{l} \textbf{JadePix4}\\ 356\times498 \text{ array of } 20\times29 \ \mu\text{m}^2\\ \sigma_{\text{x/y}}\sim3\text{-}4 \ \mu\text{m}, \ \sigma_{\text{t}}\sim1 \ \mu\text{s}, \ \text{\sim}100 \ \text{mW/cm}^2 \end{array}$

 $\begin{array}{c} \textbf{TaichuPix3} \\ 1024{\times}512 \text{ array of } 25{\times}25 \ \mu\text{m}^2 \end{array}$

A TaichuPix-based prototype detector was tested at DESY in April 2023

TowerJazz 180nm CIS process

Reference: presentation by Yiming Li

Silicon Pixel Inner Tracker

- □ Focus on HV-CMOS pixel inner tracker of ~15-20 m².
- □ Ladder design for barrel and disc for endcap
- Given what happened with the TSI 180nm production line, it is better to have backup foundries
- □ Exploring SMIC 55 nm and TPSCo 65 nm processes

<u>Zone 2</u>

20×32 pixels, 72×36µm² Designs of charge collection & cell electronics COFFEE2 chip with SMIC 55 nm process

<u>Zone 1</u>

6×9 pixels, 80×40μm² Diodes of different charge collection

<u>Zone 3</u>

26×26 pixels, 25×25μm² Peripheral digital processing and communication

CFRP truss structure: ~0.18% X_0 Outer layer may be attached to TPC

COFFEE2 Test Board

AC-LGAD Outer Tracker (Time Tracker)

- The outer silicon tracker ~ 85 m², the Z precision is not crucial \Rightarrow cost-effective Si strip detector
- Need a supplemental PID to TPC at low energy \Rightarrow LGAD ToF
- AC-LGAD Time Tracker combines the two needs in one detector, and expect $\sigma_t \sim 30 \text{ ps}, \sigma_{R\Phi} \sim 10 \mu \text{m}$

Strip AC-LGAD by IHEP / IME

Strip size 5.6 mm \times 100 μ m Pitch: 150, 200, 250 µm

Pixelated TPC

- Initial TPC design has difficulty at high luminosity Z pole due to IBF
- A pixelated TPC achieves $\sigma(r-\Phi) \sim 100 \mu m$, with (500 μm)² readout pads, IBF×Gain ~1 at G=2000
- Full simulation study also shows $3\sigma \text{ K}/\pi$ separation at 20GeV
- Preliminary mechanical design \Rightarrow RL = 15% X₀ for endcap and 0.55% X₀ for barrel part
- Plan to have a test beam this fall to characterize the performance and validate the design

Prototype PFA Calorimeters

□ ScW-ECAL: transverse 20×20 cm, 32 sampling layers

~6,700 channels, SPIROC2E (192 chips)

□ AHCAL: transverse 72×72 cm, 40 sampling layers

~13k channels, SPIROC2E (360 chips)

HCAL: scintillator (tile)+SiPM, steel

Reference: presentation by Haijun Yang

06/17/2024

Crystal Bar Calorimeter

Double-end readout, potentially positioning with timing Save readout channels, minimize dead area and material Challenging in pattern recognitions with multiple particles

23

Glass Scintillator HCAL

- To replace plastic scintillator with high density, low cost glass scintillator, for better hadronic energy resolution and BMR
- Key specifications:
 - Light yield: 1000~2000 ph / MeV
 - Density: 5~7 g/cm³
 - Scintillation time: ~100 ns
- The Scintillation Glass collaboration continues to progress on the quest for better GS
- The GS1 / GS5 measurements are from (5mm)³ small size samples. Tiles of 40×40×10 mm³ are needed for GS-HCAL

Parameters	Unit	BGO	LYSO	GAGG	GS1	GS5
Density	g/cm ³	7.13	7.5	6.6	6.0	5.9
Hygroscopicity		No	No	No	No	No
Rad. Length, X ₀	cm	1.12	1.14	1.63	1.59	1.61
Transmittance	%	82	83	80	80	80
Refractive Index		2.1	1.82	1.91	1.74	1.75
Emission peak	nm	480	420	520	390	390
Light yield, LY	ph/MeV	8000	3000	54000	1347	1154
Energy resol., ER	%	9.5	7.5	5.0	25.3	25.4
Decay time	ns	60, 300	40	100	80,600	90,300

Muon Detector

- Muon ID, combining with magnet return
- > Requirement: $\epsilon > 95\%$, $\sigma_T \sim 1-2$ ns
- > Total area ~ 4500 m^2 , ~40 k channels
- For the second secon

Luminosity Calorimeter

LYSO bars of 10×10×200 mm³

Reference: presentation by Suen Hou

CEPC Software

Genera	CEPC				
Simulat	Applications				
Reconstruction		Analysis			
Coordina	EW/Corro	FDM 4har			
Geomsvc	Fwcore	EDIVI4nep			
Gaudi framew		ork			
Core Software					
LCIO	PODIO	DD4hep			
ROOT	Geant4	CLHEP			
Boost	Python	Cmake			
External Libraries & Tools					

CEPCSW has been developed based on components of Key4hep: Gaudi, EDM4hep, K4FWCore DD4hep

- Single source of detector information, but support multiple designs
- A web-based tool Phoenix for event and detector visualization

https://cepcvis.ihep.ac.cn/#/

Collaboration With Industry

06/17/2024

CEPC 650MHz Klystron at Kunshan Co.

CERN HL-LHC CCT SC magnet

CEPC SC QD0 coil winding at KEYE Co.

CIPC (CEPC Industrial Promotion Consortium) was established in Nov 2017. So far 70+ companies have joined.

CEPC Detector SC coil winding tools at KEYE Company (Diameter ~7m)

 Superconduting materials (for cavity and for magnets)
 Superconductiong cavities

- Cryomodules
- Cryogenics
- Klystrons
- 6) Magnet technology
- 7)Vacuum technologies
- 8) Mechanical technologies

CEPC long magnet measurement coil

10) SRF
11) Power sources
12) Civil engineering
13) Precise machinery
.....
More than 40 companies joined in

9)Electronics

More than 40 companies joined in first phase of CIPC, and 70 companies now. 28

International Efforts Towards Collaborative Experiments

Name	Brief introduction	Role in the CEPC team
Yifang Wang	Academician of the CAS, direc-	The leader of CEPC, chair of the SC
	tor of IHEP	
Xinchou Lou	Professor of IHEP	Project manager, member of the SC
Yuanning Gao	Academician of the CAS, head	Chair of the IB, member of the SC
	of physics school of PKU	
Jie Gao	Professor of IHEP	Convener of accelerator group, vice
		chair of the IB, member of the SC
Haijun Yang	Professor of SJTU	Deputy project manager, member of
		the SC
Jianbei Liu	Professor of USTC	Convener of detector group, mem-
		ber of the SC
Hongjian He	Professor of USTC	Convener of theory group, member
		of the SC
Shan Jin	Professor of NJU	Member of the SC
Nu Xu	Professor of IMP	Member of the SC
Meng Wang	Professor of SDU	Member of the SC
Qinghong Cao	Professor of PKU	Member of the SC
Wei Lu	Professor of THU	Member of the SC
Joao Guimaraes da Costa	Professor of IHEP	Convener of detector group
Jianchun Wang	Professor of IHEP	Convener of detector group
Yuhui Li	Professor of IHEP	Convener of accelerator group
Chenghui Yu	Professor of IHEP	Convener of accelerator group
Jingyu Tang	Professor of IHEP	Convener of accelerator group
Xiaogang He	Professor of SJTU	Convener of theory group
Jianping Ma	Professor of ITP	Convener of theory group

Table 7.2: Team of Leading and core scientists of the CEPC

- Institution Board: 32 top domestic universities/institutes
- The International Advisory Committee (IAC) started in 2015, and held meeting yearly. The IAC members include Prof George Hou (2015-2022), Prof Hann Chang (2022-)
- Two international review committees for R&D: (IARC, IDRC) started in 2019.
- Currently the CEPC study group consists of ~1/4 international members. We hope to boost up international participation.

International Workshops

- International workshops (with emphasis on the CEPC):
 - In China: Beijing (2017.11, 2018.11, 2019.11), Shanghai (2020.10 / hybrid), Nanjing (2021.11 / online, 2022.11 / online, 2023.10), <u>Hangzhou (2024.10)</u>
 - In Europe: Rome (2018.05), Oxford (2019.04), Edinburgh (2023.07), Marseille (2024.04), Barcelona (2025.?)
 - In USA: Chicago (2019.09), DC (2020.04 / online)
 - Annual IAS program on HEP (HKUST) since 2015, (2025.01.??)
- Many topic-specific workshops at various sites

Strategic Supports

- CAS is planning for the 15th 5-year plan for large science projects. A steering committee has been established, chaired by the president of CAS.
- ✤ High energy physics and nuclear physics are one of the 8 groups.
- CEPC is ranked No. 1, with the smallest uncertainties, by every evaluation committee, both domestic and international one among all the collected proposals.
- The final report has been submitted to CAS for consideration.
- ✤ This process is within CAS. The following national selection process will be decisive.

Optimal Timeline and Upcoming Events

