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LHCb Upgrade II

• New detector proposed for 

LHCb during Runs 5 and 6 of 

the LHC to ingrate 300 fb-1 of 

data at the end of the LHC
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Detector for Upgrade II

• Same performances as Run 3, with a pile-up of 40 instead of 6
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Run 3 Run 5
• Same geometry for the detector with innovative technologies for sub-detectors and data processing

• Main elements: 
• Increase granularity
• Add timing measurement (resolutions up to 10-50 ps)
• Radiation hardness (up to 1016 neq/cm2)
• Data rate: 200 Tb/s 



Détecteur pour Upgrade II
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Vertex Locator (VELO):

Pixels 3D, 28nm

Timing 50ps

Nouvel RF-foil

Upstream Tracker 

(UP):

Pixels CMOS MAPS

Résistant aux 

radiationsMighty Tracker (MT):

Intérieur: pixels CMOS

Extérieur: Fibres Scintillantes

(SciFi actuel)

RICH1 & RICH2:

Petite taille de pixels

Mesure du temps

SiPM, MCPs

Magnet Stations (MS):

Plaques de scintillateurs

Détection de traces à 

basse impulsion

Picosecond ECAL (PicoCal):

Timing et segmentation

Intérieur: SpaCal

Extérieur: Shashlik

TORCH: 

Time-of-flight

Plaques de 

quartz

SiPM, MCPs

Muon System: 

Intérieur: m-Rwell

Extérieur: MWPC
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ECAL Upgrade (PicoCal): Granularity

• Improve efficiently performaces at high luminosity

• Reorganize ECAL zones in rhomboic shapes to follow better the 
radiation and occupancy maps

• Five zones with cells of different sizes: (1 module = 1 bloc of 12x12 
cm2)

• 1.5x1.5 cm2: 32 modules (type SpaCal-W) – 2048 cells

• 3x3 cm2: 144 modules (type SpaCal-Pb) – 2304 cells

• 4x4 cm2: 448 modules (type Shashlik) – 4032 cells

• 6x6 cm2: 1344 modules (type Shashlik) – 5376 cells

• 12x12 cm2: 1344 modules (type Shashlik) – 1344 cells

• Baseline option = Add longitudinal segmentation at shower
maximum (separation electron/hadron) in all cells

• One cell = 2 channels for readout (1 front and 1 back)

• Total of 30208 voies

• Descoped option = No longitudinal segmentation in outer modules 
(4x4 cm2, 6x6 cm2, 12x12 cm2) 6



PicoCal: Precise time measurement

• To fight again the large background due to 
pile-up: add time measurement in ECAL with 
a precision of 15 ps = PicoCal

• Select cells where |tECAL-tPV|/s(t)<3
• tPV : collision time measured in other detectors 

(VELO for example)
• tECAL : time measured in the ECAL, corrected

from time of flight
• s(t) : ECAL time resolution

• Participations of French and Chinese
institutes:
• Performance studies with simulation in 

particular to compare baseline and descoped
options

• R&D and characterisation of new modules
• R&D of new electronics 7

Full simulation of signal B0→K*0 g with pile-up

Run 2

Run 5 (15 ps)



ECAL Modules

• Ongoing R&D to produce modules allowing a precise time measurement and a 
relative energy resolution of 10%/sqrt(E)
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SPACAL:

SHASHLIK:

Current modules: external regions
W absorber, cristal fibers

(GAGG, gadolinium 

aluminium gallium garnet):

High radiation tolerance and 

small Molière radius

Pb absorber, polystyrene 

fibers



Optimisation of GAGG scintillators

Good scintillator for innermost part of PicoCal

Radiation-hard

High density 

High light output and fast decay time

Commercial GAGG decay time ~50 ns, desirable ~5 ns

Collaborate with SIPAT to reduce decay time by tuning composition

and doping

High-quality scintillator fibres and samples obtained

Decay time at cost oflight output ~5k/MeV acceptable
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Optimisation of GAGG scintillators

GAGG samples characterisation at CERN & PKU

Results feedback to SIPAT to iterate
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Light output measurement
Decay time measurement

Light output measurement Decay time measurement PhotoluminescenceAbsorbance

PhotoluminescenceAbsorbance

Perkin Elmer Lambda 650
Perkin Elmer LS55

Edinburgh DS5

Edinburgh FLS1000 

Now decay time between 15 − 20 ns; light output ~10k/MeV

R&D still ongoing



3D-printing tungsten (W) absorber
W has small radiation length and small Moliere radius

3D-printing technology to ease W matrix production

Collaboration with LaserAdd to produce W absorber
Good samples obtained

• Good roughness needed not to scratch fibres

• High density

Characterisation W samples, feedback results to LaserAdd to optimise
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Good roughness 𝑅𝑎 ≈ 4 μm achieved, can smoothly
insert fibres

Density (units: g/cm3)

Unit: mm

Fiber insertion test

Microscopy picture
Surface roughness

Density

scale

Pure W LaserAdd

19.3 18.9



Prototype SPACAL-W+GAGG
New prototype in construction
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Prototype schematic

 3 pieces of 3D-pinted tungsten absorber 

of 12 × 12 × 5 cm3 produced by LaserAdd

in China

 4x4 cells (1296 holes) equipped by 

GAGG fibers from SIPAT

 Further cells will be equipped with 

fibers from other producers later for 

time resolution studies

 Double-sided readout

Testbeam at SPS this June



Resolution studies with full simulation
Resolution studied with single-photon sample: good precision as 

expected 
 Position resolution of 1mm in the inner 

part:

 Energy resolution: relative 
10%/sqrt(E)

 Time resolution of 11ps in the central 
part: Cell size 

[cm2]

Time resolution [ps]

Baselin

e

Downscop

ed

1.5 × 1.5 11.4 11.4

3 × 3 13.8 13.8

4 × 4 20.2 43.4

6 × 6 22.4 42.2

12 × 12 24.3 44.0
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Example fit



Performance studies with full simulation
Benchmark channel: 𝐵0 → 𝐾∗0𝛾

 Timing cut effective in 
reducing bkg.

 Larger background level with 
downscoped PicoCal setup 
(worse time resolution)

 Performance comparison taking 
Τ𝑆 𝑆 + 𝐵 per fb−1 as Figure Of 

Merit : 
significantly worse performance 
with downscoped PicoCal setup
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A new reconstruction algorithm is being developed to take into account the longitudinal 

segmentation (i.e. Layered reconstruction)

The algorithm is promising to improve 𝜋0 reconstruction efficiency

Reconstruction algorithm development 

Front 

section

Back 

section

*Shift of seed cell from front to back 
section

*Position resolution with 
single-photon:large
improvement with new 
algorithm

*𝐵0 → 𝜋+𝜋−𝜋0
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Resolved p0 Merged p0



Electronics for PicoCal

• Architecture:

• Readout with PMTs

• Two separate paths with dedicated ASIC developed in parallel, with the same
technologiy (TSMC 65 nm), running at 40 MHz:
• Time ASIC (SPIDER): waveform TDC in analog memories (R&T IN2P3, Orsay/Clermont-

Ferrand/Lyon/Caen/Nantes) (dynamic range of ET = 50 MeV to 5 GeV, resolution 15ps 
RMS)

• Energy ASIC (Barcelone, Valence), measurement of the integrated charge at 40 MHz 
over 12 bits with two gains (dynamic range between ET = 0 and 40 GeV)
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Mesure du temps: Waveform Digitizing

• Time measurement is done by sampling the 
signal shape using analog memories and a 
FPGA: development of a dedicated ASIC 
called SPIDER

• Time is computing using:
• A counter (~1 ns step),    DLL2
• A DLL to define the region of interest (~100 ps step)  

DLL1
• Samples on the signal shape: Cell banks

• The interpolation in a FPGA allows to measure 
the time with a precision of a few ps RMS 
with a precise calibration even with signals 
with small amplitudes.

• The main disadvantages that must be 
addressed in the new SPIDER chip:

• Large deadtime (~ 100 ms) limiting usage at high rate 
(goal = 40 MHz)  => ADC massively parallel to 
reach at least 50% occupancy

• Need of a trigger: every channel is self triggered
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Technologie: TSMC CMOS 65nm

• 10-bit Wilkinson ADC at 5 GHz

• Memory cells (switches/capacitors) with ~0.8V 

dynamic range and noise level ~0.5mV RMS

• DLL between 40 and 640 MHz

First prototype Automne 2024 (final version end 

2029)



Conclusions

• Common activities in Chinese and French groups about LHCb ECAL 
Upgrade :
• R&D for new modules with GAGG fibers
• Performance studies with simulation
• Design of ASIC to measure timing precisely

• In the near future: 
• Test beams at DESY and SPS to measure module characteristics
• First prototype of electronics

• On the longer term: 
• Full production of innermost ECAL modules
• Full production of Front-End electronics
• Implementation of algorithms in FPGA to improve calorimeter reconstruction
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Backup
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