

CEPC Crystal Calorimeter: R&D highlights

Yong Liu (IHEP) for the CEPC-calorimetry team CHiP Cross-Strait Workshop on Advanced Detectors and Technologies June 17, 2024

High granularity calorimetry

- Future lepton colliders as Higgs/EW/top factories
 - Requires unprecedented energy resolution for jet measurements
 - A major solution: highly granular (imaging) calorimetry + particle flow algorithm (PFA)
- PFA calorimetry: various options explored in the CALICE collaboration
- Focus in this talk: a new option with finely segmented crystals with SiPM readout

High granularity calorimetry: PFA

Components in jets	Sub-Detectors	Energy fraction (average) within a jet*	(Typical) Sub-detector Resolution	p [†] γ
charged particles (X^{\pm})	Tracker	~62% <i>E_j</i>	$10^{-4}E_{X}^{2}$	h
photons (γ)	ECAL	~27% <i>E</i> _j	$0.15 \sqrt{E_{\gamma}}$	
neutral hadrons (h)	ECAL+HCAL	~10% E_{j}	$0.55 \sqrt{E_h}$	ρ γ

*Measurements of jet fragmentation at LEP (and ~1% by neutrinos)

ECAL

tracker

HCAL

• Particle Flow Algorithm (PFA)

- To achieve unprecedented jet energy resolution of ${\sim}30\%/{\sqrt{E_{jet}}}$
 - Reminder: multiple particles within a jet
- Choose a sub-detector best suited for each particle type
 - Charged particles measured in tracker
 - Photons in ECAL and neutral hadrons in HCAL
- Separation of close-by particles in the calorimeters
- PFA-oriented calorimeters: high granularity (1~10 million channels)

CEPC 4th conceptual detector design

• Future lepton colliders: CEPC as an earliest possible option

- Precision measurements: Higgs/W/Z bosons, top; BSM searches
- PFA calorimetry: promising to achieve Boson Mass Resolution (BMR) < 4%
- High-granularity calorimeters with Particle Flow Algorithm
 - (New) Electromagnetic calorimeter with segmented crystals
 - Expect to provide 3D position + energy + time
 - Significantly improve EM energy resolution: $15\%/\sqrt{E}$ to $2\sim 3\%/\sqrt{E}$
 - (New) Hadron calorimeter with glass tiles
 - Scintillating glass tiles (dense and bright): highly segmented
 - Hadron energy resolution from $60\%/\sqrt{E}$ (CEPC-CDR) to $30\sim40\%/\sqrt{E}$

PFA-oriented calorimeters

Higgs physics benchmarks

- Physics potentials with crystals
 - Photons and jets
- Boson Mass Resolution (BMR)
 - Jets $(H \to gg)$: 3.8 % \to 3.6%
 - Photons $(H \rightarrow \gamma \gamma)$: 2.1% \rightarrow 1.2%

Note: ideal ECAL geometry with 1cm³ BGO cubes

Flavor physics potentials

- Crystal ECAL
 - Higher sensitivity to photons and much better EM resolution
- Potentials for π^0/γ in flavor physics

<u>B0 to pipi @CEPC(CEPC Flavor Physics/New Physics/Detector</u> <u>Technology Workshop, Fudan, 2023), Yuexin Wang</u>

ECAL Resolution	σ_{m_B} (MeV)	$B^0 \to \pi^0 \pi^0$	$B^0_s \to \pi^0 \pi^0$
$17\%/\sqrt{E}\oplus 1\%$	170	$\sim 1.2\%$	~ 21%
$3\%/\sqrt{E}\oplus 0.3\%$	30	$\sim 0.4\%$	$\sim 4\%$

Note: ideal ECAL geometry with 1cm³ BGO cubes

JHEP12(2022)135

High-granularity crystal calorimeter

• Designs and specifications

- Based on G4 simulation and digitisation for crystal-SiPM
- Low threshold desirable for optimal EM resolution
- Stringent requirement on dynamic range
- Timing: as an extra dimension to calorimetry
- Need validation studies with *prototyping* and *testbeam*

(New) *Stereo Crystal Calorimeter* Talk by Huaqiao Zhang (IHEP) in this workshop

CEPC crystal calorimeter with long bars

- Long crystal bars in orthogonal arrangements
 - $1 \times 1 \times 40$ cm³ crystal bars, double-side readout with SiPMs
 - Save readout channels and minimize dead materials
 - Achieve high granularity with information from adjacent layers
 - Positioning potentials with timing at two sides

Module with 1×1×40 cm³ crystals (schematics)

- Key issues and technical challenges
 - Integration of mechanics, cooling and electronics
 - Pattern recognitions with multiple particles (jets)

Ghost hits when 2 or more particles hit on one module

Long-bar crystal calorimeter: latest progress

• Mechanics: preliminary designs for barrel and endcaps

- ~24 radiation length: BGO crystal 27 layers
- Barrel: 32 towers per ring, 15 rings; endcap: 2×117 towers

- Cylindrical barrel with alternately arranged trapezoidal supercells
- Avoid cracks pointing to the IP

Mechanics: Shaojin Hou, Quan Ji; Software: Fangyi Guo, Shengsen Sun, Weizheng Song, Linghui Wu, Yang Zhang (IHEP); Zhiyu Zhao (TDLI)

- Dedicated reconstruction for long bar crystal ECAL
 - PFA reconstruction being developed in CEPCSW
 - Key issues: algorithm for long bar geometry for clustering separation and energy splitting

Particle flow algorithm for long crystal bar electromagnetic calorimeter (CALOR2024 talk)

Long-bar crystal calorimeter: preliminary results

- Latest progress: promising for BMR<4%
- Plan: full detector integration into CEPCSW

Particle flow algorithm for long crystal bar electromagnetic calorimeter (CALOR2024 talk)

Only with idea geometry setup: mechanics, cooling, SiPM/crystal digitisation \rightarrow to be implemented

Software: Fangyi Guo, Shengsen Sun,

Det

Specifications

Key Param	eters	Value	Remarks	
MIP light y	MIP light yield ~200 p.e./MIP		Ensure EM resolution better than $2\%/\sqrt{E(GeV)}$	
Dynamic ra	ange	$0.1 - 10^3$ MIP/channel	Deposited energy up to ~10 GeV per crystal	
Energy thre	eshold	(1 - 10° p.e./channel) 0.1 MIP	Dependent on MIP Signal-to-Noise Ratio	
Timing reso	olution	~400 ps @ 1 MIP	Geant4 simulation; ~100ps desired for position rec.	
Crystal nor	n-uniformity	< 1%	Calibration precision	
Temperatu	re stability	Stable at ~0.05 $^\circ~$ C	CMS ECAL (PWO4)	
Gap tolera	Gap tolerance ~100 μm		Crystal calorimeter prototype	
	Performance requirements		 Hardware activities: addressing crucial issues SiPM response linearity 	
Detector design Mechanics + coo Reconstruction s Prototyping + be	 Ming Go oftware Operating Go Go	oderate MIP light yield bod response uniformity otimal time resolution rge dynamic range olutions to radiation issues	 Uniformity of long crystal bar Time resolution: different crystal dimensions/signals Dynamic range of electronics Energy response of crystal module Mitigation/calibration schemes for radiation damage 	

EM Energy Resolution: threshold and MIP response

- EM Energy Resolution: impacts of energy threshold and MIP response
 - Geant4 with digitization: photon statistics (crystal + SiPM), electronics resolution
 - Photon statistics: 200 p.e./MIP sufficient for $3\%/\sqrt{E}$
 - Low energy threshold (0.1MIP) promising to achieve $1.6\%/\sqrt{E}$

SiPM response linearity: laser tests and simulation

- SiPM candidates: 3×3 mm² (6/10 µm pixel pitch)
- 1. (Intrinsic) Dynamic range tests
 - Pico-second laser: incident photons within ~3ps
 - PMT: reference measurements for laser intensity
- 2. Toy Monte Carlo simulation
 - Effect from crystal light decay time
 - Recovery of SiPM pixels

- Crystals with slow scintillation time like BGO
 - SiPM non-linearity: mitigated with fast SiPM pixel recovery
- SiPM with higher pixel density: NDL SiPM (6μm) with ~250k pixels

<u>Study on the Dynamic Range of SiPMs with Large Pixel Number</u> (CALOR 2024 talk)

Zhiyu Zhao (TDLI/SJTU)

Uniformity studies: BGO crystal bars

- $1 \times 1 \times 40$ cm³ BGO crystal with ESR wrapping
 - SiPM-crystal couple: air versus optical grease
- Scan with Cs-137 radioactive source (662keV gamma's)

Automated crystal scan platform

- Generally good uniformity at ~2.5% level along a single bar
- Optical grease coupling leads to 59% more response in p.e.
 - But grease coupling is difficult with good (systematic) control

Crystal modules and beam-test campaigns

- Motivations
 - Identify and address critical issues at system level
 - Electronics, mechanics and readout PCBs
 - Evaluate EM performance with testbeam data
 - Validation of simulation and SiPM-crystal digitisation
- Beam-test at CERN T9 beamline in 2023
 - One module for commissioning and first parasitic tests
 - Muon (10 GeV) and electron beams (0.5 5 GeV)
- Beam-test at DESY TB22 beamline in 2023
 - Two modules for EM performance studies
 - Electron beams: 1 6 GeV

Crystal calorimeter: module developments

Baohua Qi (IHEP)

Uniformity of 40 crystal bars

Uniformity along a crystal bar

• First crystal module: successfully developed in 2022-2023

- To address key issues on system integration
 - 3D printed supporting structures, readout boards/chips
- Developed dedicated test stands for crystal uniformity studies
- To evaluate EM performance with testbeam data

First crystal module in 2023 CERN beamtest

CERN beamtest: parasitic runs at PS-T09 (May 16-23, 2023)

- Successful beamtest with the crystal module
 - 15 GeV muons for MIP calibration: all 72 channels

MIP calibration with muons

- 1-5 GeV electrons for EM shower studies
- Data sets for validation of simulation + digitisation

DESY beamtest in October 2023

- DESY TB22 electron beam (1-6 GeV) to study new prototype and key components
 - Physics Prototype of Crystal Calorimeter $(21X_0)$: system integration, EM performance
 - Long crystal bars (40/60cm): timing resolution
 - A new SiPM-ASIC (32-ch): single photon spectrum, dynamic range
 - The 2nd batch of tiles from the "Glass Scintillator Collaboration" (4x4x1cm): MIP signals

2023 DESY beamtest: EM performance of crystal modules

DESY TB22 beamline: $21.4X_0$ crystal module

- 1 cm³ trigger cubes for beam particle collimation
- 1-6 GeV/c electrons: energy response
- Observed significant beam momentum spread

Beam-test scheduled in June 2024 at CERN PS-T09: further performance studies of crystal modules and validation of simulation + digitization

- EM resolution: significantly affected by beam momentum spread
 - No measurements of beam <u>momentum spreads</u> for DESY TB22
 - <u>In-situ MIP calibration</u> for each crystal channel: not possible at DESY
- Further beamtests at CERN PS
 - MIP calibration possible, significantly small momentum spread (~0.5%)

2023 DESY beam-test: time resolution

- (Quasi) 1-MIP response with 5 GeV/c electrons
 - $1 \times 1 \times 40$ cm³ and $1.5 \times 1.5 \times 60$ cm³ BGO crystal bars
 - 25 μm pixel SiPM, DAQ with 4-ch oscilloscope (1.25GS/s)

- beam
- Quasi 1-MIP time resolution: 500-600 ps (no significant position dependence)
- Time resolution varies with signal amplitude
 - Best timing result: 200 ps at shower maximum (close to DAQ timing limit)
 - 40 cm BGO with > 12 MIP signals
 - 60 cm BGO with > 20 MIP signals

2023 DESY beam-test: SiPM-ASIC studies

- Specs of state-of-art SiPM-readout chip (MPT-2321)
 - Capability of single photon calibration; up to 1.6 nC; 50 ps TDC
- 5 GeV/c electrons with LYSO crystals in SiPM readout
 - High S/N: single photoelectron calibration in high gain mode
 - Large dynamic range: up to 35k p.e. measured with 5cm LYSO

• Dynamic range can be further extended: lower SiPM gain, shorter SiPM recovery time

<u>Studies of a large dynamic range SiPM readout</u> <u>ASIC MPT2321-B</u> (CALOR2024 poster)

CEPC crystal calorimeter: future R&D activities

- ECFA DRD-on-Calorimetry (DRD6) collaboration
- Subtask 3.1.1: "High-Granularity Crystal Calorimeter" (HGCCAL)

Extracted from ECFA DRD6 proposal

Project	Calorimeter type	Scintillator/WLS	Photodetector	$\mathbf{D}\mathbf{R}\mathbf{D}\mathbf{T}\mathbf{s}$	Target		
Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters							
HGCCAL	EM / Homogeneous	BGO, LYSO	SiPMs	6.1, 6.2	e^+e^-		
MAXICC	EM / Homogeneous	PWO, BGO, BSO	SiPMs	6.1, 6.2	e^+e^-		
Crilin	EM / Quasi-Homog.	PbF_2 , PWO-UF	SiPMs	6.2, 6.3	$\mu^+\mu^-$		

5.2.1 Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters

• Subtask 3.1.1: The High-Granularity Crystal Calorimeter (HGCCAL) 15 is a homogeneous calorimeter with high transverse and longitudinal segmentation based on $1 \times 1 \times 40$ cm³ crystal bars arranged in a grid structure with double-ended SiPM readout. The calorimeter is optimised for event reconstruction based on particle flow algorithms (PFA) to achieve about a $3\%\sqrt{E}$ resolution for electromagnetic showers and a $30\%\sqrt{E}$ energy resolution for jets, crucial for the physics programs of future e⁺e⁻ colliders.

Key R&D required: Mechanical design and integration, development of an EM showerscale prototype.

Welcome wider and depper collaborations!

Phillipp Roloff, "WP3: Optical calorimeters" at DRD6 Collaboration Meeting (Apr. 2024)

Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters

HGCCAL:

 Homogeneous ECAL with longitudinal segmentation targeting PFA High-Granularity Crystal Calorimeter (HGCCAL) Crystal bars arranged in grid structure with double-ended SiPMs HGCCAL proposed for future Higgs e⁺e⁻ factories • Optimal EM resolution: $2 \sim 3\% / \sqrt{E}$ Fine segmentations for particle-flow algorithm Two designs and features Short crystals: compatible with PFA Long crystals: minimize dead materials, readout channel Challenges DRD 6: Calorimetry (CERN Short crystals: integration (light-weighted materials of mechanics, cooling and readout boards) Long crystals: pattern recognition (ambiguity issues) Commor Large dynamic range for SiPM + ASIC Front-end ASIC: low-power (millions of channels). continuous readout (high rate at circular colliders) HGCCAL team: IHEP, SIC-CAS, SJTU, TDLI, UST ECFA DRD6 WP3 First Meeting: HGCCAL Status and Plan Yong Liu (liuyong@ihep.ac.cr

- High-granularity crystal calorimeter: a new option for CEPC
 - Steady progress: simulation, reconstruction, mechanics and module prototyping
 - Successful beamtest campaigns at CERN and DESY in 2023
 - Extensive studies and discussions: ongoing for CEPC reference detector TDR
- Further R&D activities
 - International collaborations: e.g. ECFA DRD-on-Calorimetry (DRD6)
 - Future CERN beamtest campaigns: crucial to performance and validation studies

Acknowledgments: enormous and substantial support from CERN, DESY and CALICE

2024/06/18 -19 IoP, AS

Workshop on Advanced Detectors and Technologies

Backup Slides

Yong Liu (liuyong@ihep.ac.cn)

06.17.2024

PFA Reconstruction Algorithm for long-bar layout

Long Crystal Bar: Tests with Radioactive Source

- BGO crystal bar directly air-coupled with SiPM
 - Energy resolution of 11.2% @662keV
 - Light yield: ~200 p.e./MIP enough for the LY requirement
 - Uniformity scan: <5% non-uniformity

Experiment: detected photon

ChA@200 mm

- Module with transverse size of 12×12 cm² cm:
 - Sufficient to contain most EM energy with particles hitting module center
 - Degradation of energy resolution: ~0.1% level

 $25X_0$ in longitudinal depth (beam incidence)

First Crystal Module: Batch Test of BGO Crystal Bars

- Batch test of SIC-CAS BGO crystal bars
 - 40 crystals with ESR and Al foil wrapping
 - Scan with Cs-137 radioactive source

- Generally good uniformity along a single bar
- Response varies among bars, 36 crystals were selected for beamtests

Crystal module prototyping

 3×3 mm² SiPMs with 10/15 μ m pixel used

2023 CERN Beamtest: First Crystal Module

- Beamtest of the first crystal module at CERN PS-T9 (May, 2023)
 - Parasitic runs with CALICE Sci-W ECAL and AHCAL prototype
 - Crystal module: MIP calibration, EM performance
 - Technical issues: design of mechanics and electronics, temperature monitor, etc.

SiPM Dynamic Range studies: Laser Tests

- Experiment to measure the intrinsic dynamic range of SiPM with laser
 - Pico-second laser: <40ps pulse width, 405nm wavelength
 - SiPM: HPK S14160-3010PS, 10μm pixel, 89984 pixels(SiPMs with 50μm and 6μm pixel were also tested)
- Deviation from linearity becomes noticeable starting from 10^4 p.e.
- SiPM saturation value is close to but a little smaller than its pixel number

Simulation: crystal-SiPM readout

- Maximum energy deposition in one crystal(from 180GeV Bhabha electrons):
 - ~15GeV \rightarrow ~ 1.7×10⁵ p.e.(1 side)
- Detailed simulation including SiPM pixel recovery effect: ٠
 - Photon time stamps: based on Geant4 optical simulation of $1 \times 1 \times 40 cm^3$ BGO crystal bar
 - Assuming uniform light profile on SiPM
 - Including SiPM PDE and BGO emission spectra
- $1 \times 1 \times 40 cm^3$ BGO + $10 \mu m$ SiPM with $3 \times 3 cm^2$ size: 10% non-linearity at ٠ 1.7×10^5 p.e. -> can be corrected by this model

Toy Monte Carlo including

- SiPM pixel density, PDE spectrum, crosstalk, pixel multi-fired effect
- BGO emission spectrum, detected time of scintillation photon

Simulated response curve of SiPM

400

0.018

🖗 0.016 0.014 0.012

0.01

0.008 0.006

0.004 0.002