Measuring QED radiative Bhabha to 10⁻⁴ precision, for CEPC luminosity

Suen Hou 侯書雲 Academia Sinica suen@sinica.edu.tw

2024.06.17

1

Outline

- o Theory, BHLUMI precision
- CEPC LumiCal design
- o Radiative Bhabha measurement

BHLUMI theoretical precision $e^+e^- \rightarrow e^+e^-(\gamma)$ Ζ,γ $\mathcal{L} = \frac{1}{\varepsilon} \frac{N_{\rm acc}}{\sigma^{\rm vis}} \quad \sigma = \frac{16\pi\alpha^2}{s} \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\max}^2} \right)$ e⁺ Events PETRA/PEP 10 10⁻² 10 ³⊣ 10⁻³ 2 10 10 0.04 0.06 0.08 0.1 0.02 $\theta(p2)$ (Rad) **BHLUMI 4.04** S. Jadach [CPC 101 (1997) 229]

1999 systematic 0.061 % 2019 systematic 0.037%

Evolution of luminosity theoretical error at LEP1

Type of correction / Error	1999	Update 2019
(a) Photonic $O(L_e \alpha^2)$	0.027% [4]	0.027%
(b) Photonic $O(L_e^3 \alpha^3)$	0.015% [5]	0.015%
(c) Vacuum polariz.	0.040% [6, 7]	0.011% [8, 9]
(d) Light pairs	0.030% [10]	0.010% [11, 12]
(e) Z and s-channel γ exchange	0.015% [13, 14]	0.015%
(f) Up-down interference	0.0014% [15]	0.0014%
(g) Technical Precision	-	(0.027)%
Total	0.061% [16]	0.037%
 (d) Light pairs (e) Z and s-channel γ exchange (f) Up-down interference (g) Technical Precision Total 	0.030% [10] 0.015% [13, 14] 0.0014% [15] - 0.061% [16]	0.010% [11, 12] 0.015% 0.0014% (0.027)% 0.037%

[arXiv:2211.14230] [PLB 803 (2020) 135319]

Bhabha measurements $e^+e^- \rightarrow e^+e^-(\gamma)$

4

BHLUMI QED on $e^+e^- \rightarrow e^+e^-(\gamma)$

LEP forward detector **not capable of e/y** separation

BHLUMI *e⁺e⁻y prediction*

- $E_{CMS} = 92.3 \text{ GeV} \quad \theta = 10^{\circ}80 \text{ mRad}$
- $\circ e^+e^- \rightarrow e^+e^- + N\gamma \rightarrow E\gamma > 50 MeV$
- **Opening angle** Ω(e, γ) vs. r(e) increase w. electron ϑ

• Photon (max. E) examined

BHLUMI at CEPC boosted $e^+e^- \rightarrow e^+e^-(\gamma)$

Bhabha counting to 10⁻⁴ precision

• Event counting $N = \sigma \cdot \int L$

Luminosity by detecting Bhabha events

- a pair of back-back electrons,

precision ϑ on e,e(γ) in fiducial region

Bhabha systematic error

 $\delta L/L \sim 2 \delta \vartheta / \vartheta_{min}$

requiring $\delta L/L = 10^{-4}$

at $z = \pm 1 m$, $\theta_{min} = 20 mRad$ $\rightarrow \delta \vartheta = 1 \mu Rad$ or $dr = 1 \mu m$

error due to offset on Z

 \rightarrow **50** μm on Z eq. dr = $\delta z \times \vartheta$ = **1** μm

$$e^+e^- \rightarrow e^+e^-(\gamma)$$

$$\begin{aligned} \mathcal{L} &= \frac{1}{\varepsilon} \frac{N_{\text{acc}}}{\sigma^{\text{vis}}} \\ \sigma &= \frac{16\pi\alpha^2}{s} \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\max}^2} \right) \end{aligned}$$

GEANT LumiCal electron shower

2X₀ LYSO for $e^+e^- \rightarrow e^+e^-(\gamma)^{1400}$

Bhabha hits on LYSO |y|>12mm

incident particles are e^{\pm} ,(γ) and secondaries

- GEANT sum dE/dx in each LYSO bars 3x3mm², 23 mm long, 2X₀
- Deviation to e[±] truth (impact hit >Eb/2) mostly < 0.2mm
- **Hit distributions in a Bar** distributed due to Bhabha θ , w./w.o. photon

sum dE/dx all LYSO bars (a plane)

- e^{\pm} one track : sumE min. 20 MeV
- $(e^{\pm} + FSR\gamma)$: two MIPs, sumE x2

Bhabha event pile-up

- 1. High-Lumi Z $L_{max}/IP = 115 \times 10^{34}/cm^2s$
- 2. Bhabha both e⁺, e⁻ detected, X-sec = 246 nb = (246x10⁻³³) x (115 x 10³⁴) /s = 115 kHz
- 3. Event rate / 25 ns bunch crossing = 0.003 events /b.c.

4. Pile-up: next b.c., @adjacent cell Pile-up Fraction = 0.018*6cells/2sides = 0.054 Pile-up rate = 0.003*0.054 = 1.6 x 10⁻⁴

BHLUMI acceptance z = 1000 mm					
LAB both e ⁺ , e ⁻ detected					
θ>15 mRad	θ>15mR & y >15mm				
257.8	245.9				
θ>25 mRad	θ>15mR & y >25mm				
85.4 nb	78.0 nb				
θ>30 mRad	θ>30mR & y >30mm				
E /1 O	/0 1				

50 GeV e- shower in 3x3 mm² cells

event fraction /(cell of 3x3mm²) maximum at beampipe edge = 0.018

EM shower in PDG, GEANT simulation

GEANT3 parameters agree with TestBeam

CUTGAM	CUTELE	BCUTE	DCUTE	LOSS	DRAY	MULS
10 keV	10 keV	$100 \ \mathrm{keV}$	$200 \ \mathrm{keV}$	1	1	2

Table 4: GEANT parameters applied in the simulations.

Beam-tests planning for LumiCal: Si wafer + LYSO SiPM

- 100% quantum efficiency for electron Multiple scattering, charged shower multiplicities
- SiPM for photon counting in lateral X₀ layers

PDG lateral shower profile of EGS

Particle flow

14 Electron shower multiplicity vs GEANT3 NIM A388 (1997) 135 Setup 1 ≍ ដ చ Р <u>56</u> X eq. # ch. ParticlesSi-strip clusters 280.0 572.0 557.0 546.0 356.0 absorber 386.0 20.0 Event rate (%) 0.45X₀ Pb 1.0X₀ Pb 50 GeV 50 GeV 20 10 **Electron traversing Si-det** 30 Pb inserted for shower profile 25 GeV 25 GeV 20 Event rate (%) 2.0X₀ Pb 10 GeV 4.0X_n Pb 25 10 ec. cluster 10 data, MC 10 GeV 0 30 GEANT 5 10 GeV 10 GeV # ch. particles 50 20 25 10 0 10 0 30 4 GeV 4 GeV 4 GeV 4 GeV 50 20 5 5 25 10 16 0 0 30 10 2 GeV 2 GeV 10 2 GeV 2 GeV 50 20 5 5 25 10 0 0 0 0 5 0 10 20 20 30 20 60 10 0 10 40 0 40 0 N_{clr} N_{clr}

50 GeV Electron shower multiplicity

Charged shower particles, Si-det + Al absorber

- 50 GeV electrons @ CERN X3
- Si-strip 50um pitch 300um thick
- Al absorber to expand shower distribution

NIM A374 (1995) 157

summary

Detecting Bhabha for QED/luminosity to 10⁻⁴ Det. Tech has advanced

- 100% Quan. Efficiently
 Si-strip on electrons
 - SiPM on LYSO photons
- \circ Si-strip + LYSO (2X₀)

 e/γ separation for Rad. Bhabha

Ο Testbeam on e, γ to confirm

multiple scattering preshower spectra

x-axis