

CMS HGCAL

Rong-Shyang Lu National Taiwan University

Introduction

HL-LHC and Phase-2 Upgrade

LHC / HL-LHC Plan

HILUMI LARGE HADRON COLLIDER

CHiP Cross-Strait Workshop

Introduction

CMS Phase2 pp 7TeV FLUKA v6.3.0.1:

CHiP Cross-Strait Workshop

Active Material

Radiation level comparable to pixel tracker

Silicon Sensor ———

Metalized Kapton Sheet CuW BasePlate* Rigidity, contributes to the absorber material

Lower radiation level than silicon sector

Cell sizes from 4 to 30 cm²

Tileboard PCB -

Hosting the readout chips

Wrapped Scintillating Tile _ Reflective foil

Silicon Photo Multiplier (SiPM)

Scintillator

v55]

Integration : Cassette

CHiP Cross-Strait Workshop

CHiP Cross-Strait Workshop

Rong-Shyang Lu / NTU

June 17, 2024

CEE Cassette

Integration Animation

CMS HGCAL 'High Granularity Calorimeter'

Silicon Module Composition

- Stack of baseplate, sensor, and readout hexaboard. Baseplates are made of CuW in CE-E, carbon fiber in CE-H
- Relative alignment within \sim 50um achieved with gantry based automated assembly.
- Electrical connections are done with wire-bonds

signal bonds shield bonds backside HV bonds

Silicon Sensor

- 8-inch Hamamatsu sensors. Three thickness and technologies. assuming 3ab⁻¹ lifetir
 - ♦ 300 µm (FZ), up tc
 - ♦ $200 \,\mu\text{m}$ (FZ), up tc
 - ♦ $120 \,\mu m$ (EPI) , up t

HGCAL L (lower left) Halfmoon

HGCAL UL (upper left) Halfmoon

Low Density 198 cells

High Density 444 cells

Low Density Partial

CCMS (very target)

Sensor Qualification Center @NCU

- NCU has set up a cleanroom with probe station and probe card to measure IV and CV for HGCAL LD and HD sensors.
- Goal is to measure 5% of each batch coming to Taiwan.

CHiP Cross-Strait Workshop

Module Assembly Center @NTU

- At NTU, a cleanroom (915) and an electronic lab (913) equip essential silicon detector assembly equipment. An additional room in the basement (B205) for multi-module QC.
- The facility has also contributed to other projects

CHiP Cross-Strait Workshop

Main equipment

CHiP Cross-Strait Workshop

- Automatic gantry operation assembling module layers
- 2 module assembly done in June 13, 2024

DCDC Modules

Dr. Stefano Caregari (NCU)

- The HGCAL dedicated DCDC modules are based on CERN bPOL12V_V6 (TSMC 65nm) ASIC. It converts 10V from PP0 to 1.5V needed for frontend electronics.
- Custom-designed toroidal coils (460nH) and copper shields to fit in the space and radiation tolerance

CHiP Cross-Strait Workshop

Frequency (Hz)

System Test

- NTU participated in system test and beam-test exp since 2016. R.-S. Lu and A. Steen were conveners of the system test group.
- In 2016, the 6-inch prototype modules was placed in the beam and measured the electron/pion/muon beams
- Very successful start with many enthusiastic young people participated

- In 2018, three detectors similar to HGCAL design were constructed
 - \bullet EE: 28 layers, ~1 λ , 26 Xo, single 6" Silicon hex module \bullet FH: 12 layers, ~ 3.1 λ , "daisy" of 7 x 6" Silicon hex modules + BH: ~ 5 λ , CALICE AHCAL prototype

June 17, 2024 20

- Dr. YuWei Kao was involved in the HGCAL raw data handling tasks with a realistic data processing chain established in a CMSSW branch. (RAW \rightarrow DIGI \rightarrow RECO \rightarrow DQM / Nano)
- Also, implemented level-0 calibration algorithms in Alpaka modules for heterogeneous computing.
- Initiated HGCAL DQM with polygonal DQM monitor elements implemented. A DQM GUI was built for the 2023 beam test activities.

HGCAL Organization Chart

EDMS 2281052 | CMS-CE-GN-0013 v.9 status Released access Restricted Project_Structure_v38.pdf modified 2024-06-13 16:26

Summary

- NTU and NCU teams actively participate in the HGCAL project, ranging from sensor SQC, MAC, system test, Cassette assembly, DPG, and management.
- On CERN site, Dr. Ludivine Ceard (NTU) contributes on Logistics, Dr. Dimitra Tsionou (NTU) on Cassette, and Dr. Debabrata Bhowmik (NCU) on sensor SQC group.
- We also have frequent communication and collaboration with the IHEP HGCAL team.

Extra Slides

Sensor overview

Silicon sensors from 8-inch wafers

- Planar, DC coupled, p type, common p-stop
- Two production processes: Floatzone (FZ) and epitaxial (epi)
- \circ ~ 120 / 200 / 300 $\mu m,$ low and high granularity (LD, HD)
- Hexagonal full sensors
- Partial sensors cut from multi-geometry wafers

Thickness [µm]	Main cell size [cm ²]	Main cell capacitance [pF]	Maximal fluence [n _{eq} /cm ²]	Variants	Bulk process
300	1.25	44	1.7e15		FZ
200	1.25	65	3.0e15	Full=0	FZ
200	0.56	30	5.0e15	Full-0	FZ
120	0.56	48	1.0e16	Full=0 Top=1 Left Fight	epi

Low-Density sensor ~ 200 cells of ~1.1 cm² size 300 µm & 200 µm active thickness

High-Density sensor ~ 450 cells of ~0.5 cm² size 120 µm & 200 µm active thickness

Low-Density "Partial sensor" example from "Multi-Geometry" sensor

High-Density "Partial sensor" example from "Multi-Geometry" sensor

* needed in the final detector

10 April 2024

Leena Diehl - Silicon sensors for CMS HGCAL

SQC status & summary (status April 5)

		CMS HGCAL SQC sites					
	нрк	CERN	FSU	IHEP	NCU	TTU	CMS total
Delivered	11515	2703	1523	75	2790	2246	9337
In transit (@ April 1)	-	1022	1156	0	0	0	2178
Tested	11515	194	94	4	122	149	563
Testing ratio	100%	7.2%	6.2%	5.3%	4.4%	6.6%	6.0%
Rejected (damage)	0	2	0	0	0	3	5
Rejected (IV)	0	2	0	0	1	1	4

➔ 9 sensors rejected:

- 5 with visible damage
 - Can be detected during optical inspections before module assembly
- 4 with non-compliant IV result
 - **0.7%** of tested sensors (4/571)
 - At 95% CL, defect rate below 1.8%
 - Non-sampled sensors with same failure type covered by spare parts

• Further increase optical inspection

- Full optical inspection of frontside + backside inspection by eye of all tested sensors
- Up to 11 additional sensors per batch (≤25): frontside inspection by eye for significant scratches/ chipped corners
- Enrich sample of sensors in electrical tests with optically flawed sensors

Further increase throughput of electrical tests

- Reduced IV voltage steps
- CV measurements for only ~10 cells across sensor for homogeneity tests (all cells in overnight measurements)

10 April 2024

Leena Diehl - Silicon sensors for CMS HGCAL

HGCAL Electronics – Main components and signal flow.

ASIC developments: HGCROC, ECON-T/D, LDO & Rafael Generic components: lpGBT, VTRx+, bPOL12V, linPOL These are hosted on pcbs: Hexaboards, Engines & Wagons (CE-E/H) & Tileboards (CE-H)

5/14/24 P. Aspell

CMS HGCAL

Note: The figure above is for the Si region. The scintillator region is very similar. It uses a different version of HGCROC ie. HGC2ROC and also uses the SCA for Slow Control and ALDO for SiPM biasing.

Analog

72 active channels +2 for calibration +4 for Common Mode

Dynamic Range ~0.2fC to 10pC ENC < 2500e (Cd=65pF) Peaking Time ~20ns Linearity <1%

Energy Measurement ADC 10b SAR range 0 > 100fC (150fC) **TOT** range 100fC > 10pC TOT bin size 2.5fC

10b TDC , >12fC lsb 25ps, 25ns full range

2 HGCROC versions: Different preamps optimised for Si & SiPM readout

5/14/24 P. Aspell

HGCROC Architecture specifications (TDR)

Monitoring Monitoring of DACs and essential bias voltages to SCA

320MHz clock Reception of T1 fast commands

Data Readout Path Data packets after LV1A LV1A latency up to 12.5us 2 slvs outputs @ 1.28Gbps

Trigger readout Path Trigger primitives max latency of 36bx 4 slvs outputs @ 1.28Gbps

Slow Control Programmable registers I2C protocol

Connected to SCA

CMS HGCAL

Hexaboards – LD HB PCB pre-production status

PCBs look very good so far; 44 Full Hexaboards assembled with HGCROC3b just before Easter

	Full	Half top	Half bottom	Five	Semi left	Semi right
Needed	17604	816	780	1248	276	264
Prototyping status	Prototyped OK	Pre-production =	Pre-production =	Pre-production =	Prototyped OK	Prototyped OK
Pre-production	920	40	40	70	30	30
Launched 2023	(600 HiQ +					
	320 µpack)					
Pre-production	720 (600+120)	Shipped on 6/4/24	Shipped on 6/4/24	70	30	30
# received &	remainder shipped			20 inspected: 19	12 inspected:	8 inspected:
inspection	on 5/4/24)			accepted	11 accepted	8 accepted
status	100+44 inspected:					
	142 accepted					
Pre-production	44 (24+20)	First 10 to be	First 10 to be	First 15 to be	First 10 to be	First 10 to be
assembly status	assembled 28/3/24	assembled in May;	assembled in	assembled in	assembled in	assembled in
	Further 156 to be	remainder in	April/May;	April/May; remainder	April/May; remainder	April/May; remainder
	assembled in	summer	remainder in summer	in summer	in summer	in summer
	summer; remainder					
	a bit later (limited					
	by ASICs)					

5/14/24 P. Aspell

CMS HGCAL