## ATLAS ITk Strip Detector for High-Luminosity LHC

#### 刘佩莲 (IHEP) n behalf of the ATLAS ITL Chinese Gr

On behalf of the ATLAS ITk Chinese Group

Workshop on Advanced Detectors and Technologies, 2024.6.17-19

#### **Roadmap to High Luminosity LHC**

- HL-LHC (2029):  $\mathcal{L} \sim 7.5 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ 
  - To provide 300 fb<sup>-1</sup>/year during an operating period of  $\sim$ 10 years
  - Up to 200 inelastic *pp* interactions per beam crossing (pileup)
  - Increased luminosity  $\rightarrow$  ~10 times higher radiation





#### Harsh environment

### Phase-II Upgrade of ATLAS Detector for HL-LHC

- All-silicon new Inner Tracker (ITk) → Main upgrade
- New inner barrel trigger chambers
- New readout electronics for all systems
- New High-Granularity Timing Detector (2.4 <  $|\eta|$  < 4.0)
  - Proposed to distinguish between collisions



## **Upgrade of the ATLAS Inner Detector**



- New all-silicon Inner Tracker (ITk)
- Finer granularity: 10xstrip channels ; 60xpixel channels
- Extended coverage to  $\eta$  of 4 ( $|\eta| < 2.5$  for present tracker)
- Reduced material budget



## **ATLAS ITk Strip**



1.4 m

#### IHEP contributes to the strip <u>barrel</u> detector

#### Barrel: 4 layers (double sided)

- L3/L2 with **long strip** (LS) modules
- L1/L0 with **short strip** (SS) modules
- Up to  $\sim$ 33MRad dose and 7.2 × 10<sup>14</sup>n<sub>eq</sub>/cm<sup>2</sup>

4 barrel layers Stave LS wafer 4.83 cm strips 2.41 cm strips

1.4 m

## ITk main element: Modules

- Consists of one sensor, one/two hybrids, and one power board
  - Hybrids and power boards are glued directly to silicon sensor







## **ITk Strip Sensors**

- $n^+$ -in-p with p-stop isolation
  - Collects electrons -> faster signal, reduced charge trapping
  - Always depletes from the segmented side -> good signal even not fully depleted
  - Active area 9.7×9.7 cm<sup>2</sup>, strip pitch 75.5  $\mu$ m
  - Produced by Hamamatsu Photonics K.K. (HPK) in 6-inch, 320 $\mu m$  thick wafers





Bias Voltage [V]

- Halfmoons to validate the characteristics and performance of the sensors
  - Mini sensors, Monitor diodes, test structure ...
- Operation bias voltage is set to backplane at -500V at  $-30^{\circ}C$

## ITk Strip Sensors – Study of radiation effects

- Radiation tolerant (1.  $6 \times 10^{15} n_{eq}/cm^2$ )
- Mini sensors with same layout as main barrel sensors but with 8mm of strip length.
- Proton irradiation at China Spallation Neutron Source (CSNS)
  - 3x10<sup>9</sup> protons/cm<sup>2</sup>/s @80MeV

T = +20C

600

Reverse Bias [V]

500

400

Sensor characterization

Current<100µA@500V

– I-V, C-V

T = -20C

200

100

300

Current [uA]

10 =

10

10-2

10

10-4

Charge collection efficiency measurement









## **Hybrid and Powerboard**

#### Hybrid

- 10 x ATLAS Binary Chip (ABCstar) : custom FE ASICs read 256 channels
- 1x Hybrid Controller Chip (HCCstar) : an aggregation readout chip as interface between ABCstars and stave

#### **Powerboard**

- **AMACstar**(Autonomous Monitoring And Control): monitors voltage/current/temp
- **DC-DC converter** transforms 11V supply to 1.5V for ASICs





#### All connections are made by Al wire-bonds

#### HCCstar

## **ASICs and TID Bump**

- All 3 ASICs made in 130nm CMOS technology at Global Foundries (GF)
- TID bump: a well known feature of 130nm GF chips
- Surface effects: generation of charge traps due to ionizing energy loss (Total Ionising Dose, TID)
- Leakage current was induced by positive charge trapped in the bulk of the shallow trench isolation (STI)
  - The creation/trapping of charge (by radiation, faster)
  - Its passivation/de-trapping (by thermal excitation, slower)







## **GF 130nm ASICs TID Bump Solution**

Big challenge on power and cooling. How to Mitigate?

#### **IBL readout chip FE-I4** (130nm)

•

Insertable B Layer (innermost pixel layer) installed @2014



0.5

Dose (Mrad)

Dose [Mrad]

## **ASICs and Single Event Effects**

- Single Event Effects (SEE): change of state in memory/logic due to an electrical disturbance from radiation, resulting in wrong data and misconfiguration
- Mitigation of Single Event Effects
  - Triplication logic and flip-flops as well as reset and clock trees
  - Voting system

#### • Irradiation test of ABCstar and HCCstar

 $- 3x10^9 \text{ protons/cm}^2/\text{s}$  @80MeV at CSNS



Send 0/1s to chips and read them back (configuration registers and physics package)



| Data  | flow | SEE :  | $\mathcal{O}(10^{-}$     | <sup>10</sup> )errors/event/chip |
|-------|------|--------|--------------------------|----------------------------------|
| noise | occu | ipancy | : $\mathcal{O}(10^{-1})$ | <sup>-2</sup> )errors/event/chip |

| Chip Type | Institute | $\sigma_{\rm SEU}[cm^2/p]$   |
|-----------|-----------|------------------------------|
| VO        | IHEP      | $(6.3\pm0.08)\times10^{-12}$ |
| vo        | TRUME     | $(3.7\pm0.03)\times10^{-12}$ |
| V1        | IKIOWI    | $(7.4\pm0.08)\times10^{-12}$ |

### Hybrid and Module Quality Control @IHEP



**10 cycling between -40°**C and +40°C, 12 hours

#### Local Support Structure: Stave Core

- Mechanical support using high stiffness and high thermal conductively carbon fiber
- Embedded Ti cooling pipes with evaporative CO2  $(-40^{\circ}C)$
- Copper on Polyimide (Kapton) bus tapes routing electrical connections from and to modules





#### Staves

- 28 Barrel modules on each stave (14 modules per side)
  - Modules are rotated wrt the beam line by  $\pm$  26 mrad to provide stereo information
- Readout and control electronics
  - **ABCstar**: FE chips communicate with HCCstar on each hybrid
  - HCCstar: send data at 640Mbps and receive clock and commands at 160Mbps from the End of Substructure (EoS) board over bus tapes
  - EoS board: fibre optic driver/receiver (VTRx+) and low power GigaBit Transceiver (IpGBT, 65nm CMOS CERN developed ASIC)



## **Strip Barrel Integration**

- **Staves will be inserted in four concentric Carbon cylinders** 
  - 392 barrel staves in total
  - Pre-dressed with stave locking brackets
- The global structure, Outer Cylinder (**OC**), hosts the ITk
- The barrel integration will be performed at CERN









## **Strip System Test**

- System Test validates production chain with final parts and cooling before production starts
  - Powering chain, cooling, readout...
  - Parallel readout of multiple staves at 1MHz
  - Tests with CO2 cooling system
- Barrel system test is populated with 8 staves (5 LS + 3 SS)



## **Cold Noise delayed Module production by a year**

- Unfortunately in May 2022 before modules enter production, a technical issue was discovered
  - Cold Noise appear below  $-20^{\circ}$ C , only in strip channels under PB and hybrids
  - Dedicated studies tracked down to capacitors in the DCDC domain of the powerboard vibrating at 2MHz
  - **Piezoelectric effect** below  $-20^{\circ}$ C
  - Vibrations travelling across the sensor and coupling back into the sensors
  - By May 2023 a mitigation technique was put in place: changing the glue which minimizes the noise (different stiffness)
- Module production was delayed by a year



## **Project status – Sensor Cracks**

- Another technical challenge discovered in June 2023 during stave tests
- Some sensors failed high voltage testing (early breakdown <100V)</li>
- Cracks appear at some point during thermal cycling/powering (R.T. to -40°C) only on some modules
- Simulations indicate the issue is the coefficient thermal expansion (CTE) mismatch between bybrids/powerboard and sensor
  - Stress peaks between hybrids and powerboard
- Mitigation
  - 'Interposer' added between the flexes and sensor
  - 95% of stress reduced















## **IHEP Site Module Production**

- To deliver 1000 ITk Strip barrel modules and contribute to system integration/testing
- Passed all 29 Site Qualification steps for Module production
- Produced 8 prototype and 6 pre-production modules
  - Protoype 5LS + 3LS
  - PPA x 3 (1LS + 2SS) and PPB x 3 (3LS)



#### IHEP Site for ITk Strip Module



## Summary

- In view of HL-LHC, the ATLAS experiment will upgrade its complete Inner Detector with an all silicon Inner Tracker (ITk)
- ITk is expected to improve the ATLAS performance operating under a harsh environment
- The **Strip detector** has been through many years of design and R&D with the **pre-production** 'smoothly' ongoing in several areas
- Two major technical issues have significantly delayed the production schedule
  - **Cold Noise** issue has been mitigated by changing the glues
  - Sensor Crack issue is still under investigation
- The production will start soon.

# backup

## Alibava System

- ALiBaVa (A Liverpool Barcelona Valencia collaboration) system is an analogue readout system used to read out the signal from the sensors
- Two different laboratory setups
  - Radioactive source setup
  - Laser setup
- Detector board
  - 1 or 2 sensors
- Daughter board
  - 2 Beetle chips
    - 128 channels each
    - Analogue or binary output mode
  - HV power supply for sensors
  - Sending analogue output signals to the motherboard



### **Beam Test**



#### Main goal is to demonstrate pre-production module performance

- ✓ To check uniformity of response across various sensor regions
- ✓ To evaluate track reconstruction capability
- ✓ To determine operational window: eff.>99% and noise occu.<0.1%



#### Staves

- 28 Barrel modules on each stave (14 modules per side)
  - Modules are rotated wrt the beam line by  $\pm$  26 mrad to provide stereo information
- The End of Substructure (EoS) electronic board
  - Facilities the communication and power distribution for all modules
  - Hosts radiation-hard fibre transmitter receiver
    (VTRx+) and associated electrical transceivers
    (IpGBT, low power GigaBit Transceiver





#### **Staves: Temperature Measurement**





- AMACStar allows on-stave temperature monitoring using the 10K NTCs on hybrids and power boards - HX, HY and PB NTCs
- Affected by module-module variation
- Module temperatures linear with stave temperature

#### **System Integration**



## Module Assembly and Metrology @IHEP

- Amount and height of glue matters
  - Heat emission, mechanical support, wire bonding
  - Controlled by glue robot and tooling







• Metrology for position and tilt, and glue height



• Pull test to measure the strength of bonded wires







#### powerboard



#### AMACStar

#### GaNFET

Allows the isolation of a failed sensor in breakdown connected to the same HV line using commercial GaNFET switch Enables/Disable DCDC

 Measure Voltage, Currents and Temperatures

#### bPOL12V

- Radiation hard buck converter
- 11V input, 1.5V output
- Air-core coil

#### LinPOL12V

- Radiation hard linear regulator
- 11V input
- 1.4V output for AMACStar
- 3.3V output for HV switch enable



#### Module Assembly



Align Sensor on sensor plate



Dispense glue on Hybrid through Stencil
 Glue Hybrids on sensor





• Module without Powerboard



• Glue Powerboard to sensor



Assembled Module



## **Type Invertion**

#### n-type silicon after high fluences: (type inverted)



#### p-type silicon after high fluences: (still p-type)



- + p-in-n ( LHC )
  - Collects holes (slower)
  - Depleted from the back
- n-in-p (HL-LHC)
  - Collects electrons
  - High CCE even not fully depleted