

MAPS R&D for the STCF Inner Tracker

Jiajun Qin (秦家军)

On behalf of the STCF ITKM working group

USTC

CHiP Cross-Strait Workshop on Advanced Detectors and Technologies 17-19 Jun 2024

Super Tau-Charm Facility

STCF: next generation e^+e^- collider in China:

- Center-of-mass energy: 2-7 GeV
- Peak luminosity: > 5×10³⁴ cm⁻²s⁻¹ at 4 GeV
- Collision data: more than **1** ab⁻¹/y
- With potential to further increase luminosity and beam polarization

Detector Considerations for ITK

- ↔ The challenge at the low p_T region
 - For BESIII, the tracking efficiency drops sharply below 100MeV
- ✤ There is strong physics motivation to go to low p_T region

BESIII tracking efficiency, Chin. Phys.C 40 (2016) 2, 026201

Detector Considerations for ITK

Physics requirements

- No stringent requirements on vertexing
- The main challenge is the tracking at the low momentum region ($p_T < 100$ MeV)

Process	Physics Interest	Optimized	Requirements
	-	Sub-detector	-
$\tau \to K_s \pi \nu_\tau,$	CPV in τ sector,		acceptance: 93% of 4π ; trk. effi.:
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in hyperon sector,	Tracker	> 99% at p_T > 0.3 GeV/c; > 90% at p_T = 0.1 GeV/c
$D_{(s)}$ tag	Charm physics		$\sigma_p/p = 0.5\%$, $\sigma_{\gamma\phi} = 130 \mu\text{m}$ at 1 GeV/c

- ✤ Tracking challenges at low p_T
 - Momentum resolution: Multiple Coulomb scattering
 - Track reconstruction efficiency
- Low material budget is essential to satisfy the physics requirements 2024/6/18

CMOS Pixel Sensors

* Hybrid pixels

- Sensor and readout circuit can be optimized separately
- Widely used in ATLAS/CMS
- Disadvantages:
 - Relatively large material budget
 - Hybridization: complex, expensive

* Monolithic active pixel sensors (MAPS)

- Easier integration, lower cost
- Potential of low material budget
- Adopted in STAR and ALICE ITS2

MAPS is a viable solution for STCF ITK and a small fill-factor design is preferred

Conceptual Design

✤ A preliminary design of the MAPS based Inner Tracker (ITKM)

- An alternative option to the MPGD based Inner Tracker (ITKW)
- Three layers of silicon pixel detectors, with radii of 36mm,98mm,160mm
 - Beam pipe radium: 30mm
- ✤ Acceptance: polar angle of 20°~160°
- ✤ Total area: 1.3m²

Layer	Radius (mm)	Length (cm)	Area (cm ²)
1	36	19.78	447.46
2	98	53.85	3315.87
3	160	87.92	8838.63

- Geometry/layout still being optimized
- Might extend to 4 or more layers

Design Targets

Requirements on the MAPS based Inner Tracker

- Spatial resolution: $\leq 100 \mu m$
- Material budget per layer: $\leq 0.3\% X_0$
- Power consumption: $\leq 100 mW/cm^2$
- Time resolution: ≤ 50 ns (to deal with the pileup issue at high luminosity)
- Time-over-threshold (TOT) measurement:
 - Time-walk correction
 - Correction of multi-coulomb scattering in track finding

	Physics Process	Cross-section (nb)	Rate (Hz)
	$\sqrt{s} = 3.097 \text{GeV}, \ \mathcal{L} = 0.75$	$\times 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}, \ \Delta E = 0.848$	MeV
	J/ψ	4500	337500
	$ ightarrow e^+e^-$	270	20000
High event	$ ightarrow \mu^+\mu^-$	270	20000
	Bhabha ($\theta \in (20^\circ, 160^\circ)$	734	55000
rate at SICF	$\gamma\gamma~(\theta\in(20^\circ,160^\circ)$	36	2700
	$\mu^+\mu^-$	11.4	900
	Hadronic from continuum	25.6	2000
	$2\gamma \text{ process } (\theta \in (20^{\circ}, 160^{\circ}), E > 0.1 \text{ GeV}$	~23.3	1740
2024/6/18	Total	~5300	~400000
2024/0/10			

Sensor Design

- Pixel size considerations
 - Higher priority on the power consumption than the spatial resolution \rightarrow larger pixel size to reduce the power consumption density
 - The ALPIDE sensor is already optimized and proven experimentally → keep the sensor geometry as close to ALPIDE as possible
 - Pixel-based: analog connected small pixels $(1 \times 6 \rightarrow 1, 2 \times 3 \rightarrow 1)$ using metal lines
 - Strip-based: extended diode size in one direction
 - A 3rd option also under design: digital connected small pixels

A: pixel $30\mu m \times 30\mu m$

 $\begin{array}{l} \textbf{B: Pixel-based} \\ 180 \mu m \!\times\! 30 \mu m \end{array}$

C: Pixel-based $90\mu m \times 60\mu m$

D: Strip-based $180 \mu m \times 30 \mu m$

	-1	

E: Strip-based 90μ m \times 60μ m

Alternative CMOS Technologies

- Usually MAPS is based on high-resistivity epitaxial wafers
 - Resistivity: ≥ 1 k $\Omega \cdot cm$; epi thickness: ~20 μm
- Other options are also being considered, based on available technologies in domestical foundries
 - Low resistivity epi wafers:
 - Resistivity: $\geq 10\Omega \cdot cm$; epi thickness: 10~20 μm
 - High resistivity substrates:
 - Resistivity: $\gtrsim 1 k\Omega \cdot cm$, no epi layers

TCAD Simulation

- ✤ TCAD simulation setting
- Pixel size: 170μm × 30μm
- NWELL size 2μm
- - HR epi: 20µm 1k Ω ·cm + 30µm substrate
 - HR substrate: 50µm
 - LR epi: $10\mu m 1k\Omega \cdot cm + 40\mu m$ substrate
 - Modified-TJ180nm (N-blanket design)
 - Modified-TJ180nm with pstop

Modified-TJ180nm pstop

Sensor Capacitance Simulation

✤ Nwell voltage set to 0.8V, substrate voltage scanned from 0 to -6V

Charge Collection Simulation

♦ Ionization density $80e^{-}/\mu m$

Ionization injection from center of pixel

	Collected charge (e)	Collection time(ns)
HR epi (TJ180nm)	2039.81	20.56
HR substrate	2477.65	89.72
LR epi	1089.64	74.57
Modified-TJ180nm	1969.85	1.81
Modified-TJ180nm pstop	1952.04	2.47

Charge Collection Simulation

- ♦ Ionization density $80e^{-}/\mu m$
- Ionization injection from corner of pixel (charge sharing)

			ar-1/ 🕈
			8E-17 ·
	Collected charge (e)	Collection time(ns)	7E-17 - 6E-17 -
HR epi (TJ180nm)	531.76	139.83	90 4E-17
HR substrate	508.06	163.64	S 3E-17
LR epi	277.42	220.92	2E-17 - 1E-17 -
Modified-TJ180nm	443.38	203.91	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Modified-TJ180nm pstop	435.06	34.07	time/s

0 - 4 -

Efficiency Simulation

✤ Simulation settings:

- Chip size 2cm × 2cm
- Pixel geometry: $170\mu m \times 30\mu m TJ180nm$ techno
- -1GeV/c muon, θ range 20°-160°
- Pixel threshold: 300e⁻

1.02

1.01

Geometry setting of single layer

Detection efficiency vs. polar angle

Efficiency of three layers

mu-_layer0

mu-_layer1

Readout Architecture

- ✤ In-pixel circuits
 - Analog amplifier, comparator
 - Coarse time
- ✤ Digital readout
 - Column level priority logic
 - Data processing module
- Peripheral
 - Serializer
 - PLL, LVDS
 - VDAC×2, IDAC
 - Bandgap, EoC current mirror
 - I2C

In-pixel: analog front-end

- Amplifier + Comparator
- Simulated performance (180μm×30μm,strip-based sensor)
 - In the timing measurement mode: Threshold=309.0 e⁻, ENC=11.4 e-, MISMATCH=5.7 e⁻
 - Power consumption: ~800 nA/pix, ~26 mW/cm²
 - $\Delta ToT / \Delta Q_{inj} = 4.8 \ \mu s/ke^{-1}$

In-pixel: digital

In-pixel digital circuits

- Priority readout based on TOKEN (FE-I3)
- Timestamp frequency: 20 MHz
- 8-bit leading-/falling-edge
- Readout clock: 10MHz

2024/6/18

Peripheral Readout

EoC data readout circuit

- Grouped columns with each group readout in parallel to reduce waiting time
- Readout rate >29.6 MHz/Chip, 40-bit/Hit(55-bit/Hit after frame encoding)
- Bandwidth: 800Mbps×2

- Data processing unit
 - Timestamp calibration
 - Column group MUX
 - Async FIFO
 - Frame builder
 - 8b10b encoder
 - Searilizer

Power Density Estimation

Estimated power consumption extended to the full scale chip (~2 cm×2 cm)

- Strip-based: 55.7 mW/cm²
- Pixel-based: 46.2 mW/cm²
- Expected to reach the target of ~50 mW/cm²
 - With the potential to use air cooling

Items	Power consumption	Notes				
Analog in nivel metrix	~26 mW/cm ²	Strip-based				
Analog in pixel matrix	~15 mW/cm ²	Pixel-based				
Timestamp clock distribution	12.2 mW/cm ²					
Dynamic power consumption	$2.4 \text{ m}/\text{M/cm}^2$	with a data rate of 8.7				
of the pixel matrix	2.4 IIIV/CIII ⁻	MHz/cm ²				
Periphery	23.5 mW	32MHz event rate				
PLL, serializer, LVDS	39 mW	x 2 data/clock output				
Analog configuration	20 mW					
Total	222.6 mW	Strip-based				
Ιυιαι	184.6 mW	Pixel-based				

Prototype Chips

- Layout of the 4 prototype chips
 - ALPIDE-like chip (0/1 readout)
 - 30µm×170µm pixel + TOA&TOT
 - 30µm×28µm pixel + TOA&TOT
 - Analog readout
- Has been submitted in March

Timing Improving Consideration

Precise timing provides more potential
 Promising readout architecture: digital "OR" for multiple small pixel

- ✓ Small collection electrode
 - \rightarrow High analog performance
- ✓ Multiple readout channels
 → High digital power

- ✓ Large collection electrode
 - \rightarrow Lower analog performance
- ✓ Fewer readout channels
 → Low digital power

- ✓ Small collection electrode
 - \rightarrow High analog performance
- ✓ Fewer readout channels
 - \rightarrow Low digital power

Super Pixel Design

- Combining non-adjacent pixels: avoid ToT loss
- Super pixel with 6×12 pixel array
 - 6 sets of digital readout logic
 - When cluster size < 3X4, no ToT loss occurs

Combining adjacent pixels

 \rightarrow ToT loss

Providing both high position and high time resolution ! 22

2024/6/18

In-pixel: analog front end

- In-pixel analog circuit
 - Amplifier & comparator
 - Similar to the design in TJ process
- Simulation results (post-sim)
 - Pixel Cp ~ 2.5 fF
 - $-\Delta ToT/\Delta Qin = 189$ ns per 100e-

	TJ-MAPS	GSMC-MAPS
Current	800 nA/pix	120*6 nA/pix
Supply Voltage	1.8 V	1.2 V
Threshold	309.0 e⁻	153.8 e⁻
ENC	11.4 e⁻	5.1 e⁻
Mismatch	5.7 e⁻	5.8 e⁻
<i>t_r</i> @400 e ⁻	200 ns	81 ns

In-pixel: digital readout

- Multiple pixels share readout logic
- Start-stop VCO in super pixels
 - -Record fine ToA @500 MHz
 - Almost no static power consumption
 - -5-bit fine ToA, 8-bit coarse ToA, 8-bit ToT-

Layout

Layout of super pixel: 2×6 pixel array

		•Þ2	₽₽	₽⊳	•>		•⊳		₽ ₽ ⁹		•⊳-		OR_R_2	
	₽≻	₽≻	₽	₽⊳	₽	₽⊳	₽	₽	₽⊳	₽≻	₽⊳	₽⊳	OR_R_1 Digi	ital Logic
	₽≻	₽≻	₽	₽≻	₽≻	₽⊳	₽≻	₽≻	₽≻	₽≻	₽⊳	₽≻	OR_B_1 Digi	gital Logic
Analog bias	•⊳	•⊳	•Þ-3		₽	•⊳	•Þ	7 •Þ-		•Þ	•		OR_B_2	
Analog1 Analog2 Analog3 Analog4 Analog5 Analog6 Analog7 Analog8 Analog9 Analog10 Analog11 Analog12 12 Image: Image	⋴≻	₽≻	⋴⊳	₽≻	⋴⊳	₽≻	₽≻	₽≻	₽⊳	₽≻	⋴⊳	₽≻		
VCO1 Priority Logic1 VCO2 Priority Logic2 FineCnt Logic1_1 - FineCnt Logic2_1 - FineCnt Log	₽≻	₽≻	₽≻	₽≻	₽≻	₽≻	₽≻	₽≻	₽⊳	₽≻	₽≻	₽≻		
Analog13 Analog14 Analog15 Analog16 Analog17 Analog18 Analog19 Analog20 Analog21 Analog22 Analog23 Analog2 24 Eataout														

Layout of pixel array

	adada Mik	노동은 것은 동안은 것 같은
		ant droat a ff
a an ann an a	WINNER T IT	

Double_super_pixel

2024/6/18

Summary

- MAPS-based inner tracker is a promising option for the STCF
 - Spatial resolution: $\leq 100 \mu m$
 - Power consumption: $\leq 100 mW/cm^2$
 - Low material budget per layer: $\leq 0.3\% X_0$
 - Time resolution: $\leq 50 \text{ns} \rightarrow 5 \text{ ns}$
- Prototype chips design finished and has been submitted to the foundry in 2024.3
 - Based on the HR epi technology
- Also exploring alternative CIS technologies
 - 90nm CIS with LR epi
 - 130nm CIS with HR substrate

Thank you for your attention !

P⁺ SUBSTRATE

相邻像素做"OR" ✓ 小信号像素的ToT丢失 (Cluster>1时)

错位像素做"OR"

- ✓ 避免小信号ToT丢失(Cluster>1时)
- ✓ 读出有效Group地址
- ✓ 多个Group同时有效时, 位置信息丢失

错位像素做"OR"、错位摆放Group ✓ 避免小信号ToT丢失

- ✓ 避免位置信息丢失
- ✓ 进一步减小数字功耗