Precision timing with the CMS MTD detector in the Phase 2 upgrade

(University of Science and Technology of China) For the CMS MTD group

CHiP Cross-Strait Workshop on Advanced Detectors and Technologies 2024.06.17-19 Taibei

HL-LHC upgrade and pileup challenge

Upgrade of the accelerator complex optics and injectors to increase the beam intensity

- 140 200 collisions / beam crossing, > 10000 tracks / beam crossing (40 MHz)
- target luminosity 3000 fb⁻¹
- 1 year of HL-LHC equivalent to ~10 years of LHC!

Nan Lu (USTC)

CMS MIP Timing Detector (MTD): New Precision Timing Measurement

Timing for minimum ionizing particles (MIP) particles by MTD allows 4D (x,y,z,t) track and vertex reconstruction

• Vertex merging reduced from 15% to 1%

Beam spot has a spread of about 180-200 ps:

"slice" in successive
 O(50) ps time frames
 to reduce pileup

MTD TP: LHCC-P-009

Nan Lu (USTC)

Pileup mitigation with MTD

Reduction of pileup tracks in charged isolation cone of $\Delta R < 0.3$ around muons

Reduction of pile-up by MTD enhances physics object reconstruction (μ , τ , b-tagged jets etc)

 especially beneficial for multi-particle final states, e.g. 10 - 20% gain in SM di-Higgs significance significance

Nan Lu (USTC)

Charged hadron identification

- Measurement of velocity for low p_T hadrons, enabling particle identification:
 - π/K separation up to 3 GeV
 - *p/K* separation up to 5 GeV

- Measurements of heavy flavor particles of interest to study evolution of QGP
- CMS, Alice and LHCb have complementary PID capabilities in terms of rapidity coverage

Nan Lu (USTC)

Mass reconstruction of long lived particles (LLP)

- Mass of LLP can be reconstructed with timing plus kinematics of visible part of LLP decay! Fundamentally changes how we carry out these searches
- Example: top-squark pair production and decay in gauge-mediated SUSY breaking scenario. The lightest neutralino $\tilde{\chi}_0^1$ is long-lived, velocity could be measured with MTD:

Nan Lu (USTC)

CMS MIP Timing Detector Overview

 MTD add completely new capability to CMS: measure precisely (30-70 ps resolution) the production time of MIPs

 Choice of sensor technologies for barrel and endcap timing layers driven by technology maturity, radiation hardness, power consumption, and cost and schedule considerations.

CMS-TDR-020 March 2019

Nan Lu (USTC)

MTD-BTL contributions by Peking. U & Tsinghua and Beihang University

Joined BTL since 2021 Contribution:

- key contribution to sensor optimization and final design
- module and tray assembly
 - plan to assemble 1/4 of the BTL modules
- cooling plate production

PKU BTL module assembly center:

- Improve the assembly and QA/ QC in the summer of 2023
- Assembly Center Certification in the autumn of 2023
- Start mass production in summer 2024

Nan Lu (USTC)

BTL: Crystal-Based Precision Timing

- Lutetium-yttrium orthosilicate crystals activated with cerium (LYSO:Ce) as scintillator
- Silicon Photomultipliers (SiPM) as photo sensors
- Stochastic fluctuations in the time-of-arrival of photons detected at the SiPM:

$$\sigma_t^{photostatistics} \propto \sqrt{1/N_{p.e.}} \propto \sqrt{1/(E_{dep} \times LY \times LCE \times PDE)}$$

- A MIP deposits E_{dep} ~4.2 MeV in BTL LYSO including impact angle
- LYSO is bright, fast and radiation hard: light yield (LY) ~40k photons/MeV.
- Light correction efficiency (LCE) ~25%
- SiPM Photo Detection Efficiency (PDE) 30~60%

BTL sensor: early tile geometry

Sensor design in MTD Technical Proposal, Nov 2017 LHCC-P-009

time stamp dependence on the MIP impact point on the LYSO test beam data

corrected for impact point dependence

Nan Lu (USTC)

BTL Sensor: bar geometry (baseline)

Early single sensor prototype in 2019

Nan Lu (USTC)

Early BTL Sensor Performance in Test Beam in 2019

- Timestamp of a MIP traversing BTL: $t_{Ave} = (t_{left} + t_{right})/2$
 - t_{left} and t_{right} extracted from rising edge of the pulse shape
- Achieved ~25 ps time resolution per sensor before irradiation
- Uniform time response and resolution across sensor area <u>JINST Volume 16 July 2021</u>

Nan Lu (USTC)

BTL Time Resolution breakdown

• Photostatistics and DCR noise contributions dominate timing resolution

- Photostatistics: 25 35 ps,
 stochastic fluctuations in the
 time-of-arrival of photons
 detected at the SiPM
- DCR noise from SiPM:
 - dominating source over time. Cold operation and warm annealing thanks to improved thermal management through thermoelectric coolers
- Electronics: 7ps
- Digitization: 6 ps
- Clock distribution: 15 ps

Nan Lu (USTC)

SiPM DCR noise mitigation

Strong effort to achieve TDR time resolution of 30-70ps over BTL life time:

Smart thermal management with thermoelectric coolers

• Local cooling and heating provides x10 reduction of the dark count rate with SiPMs at -45 °C during operations and in-situ annealing at +60 °C during technical stops.

DCR noise cancellation in the readout chip (TOFHIR2) with differential leading-edge discrimination

Nan Lu (USTC)

SiPM DCR noise mitigation

Strong effort to achieve TDR time resolution of 30-70ps over BTL life time:

Optimize SiPM cell size

 Trade-off between photodetection efficiency and gain (better for larger cell area) and DCR/power dissipation. Cell size of 25 µm optimal for BTL.

Time resolution as a function of the SiPM over-voltage (Vov) for three modules made of LYSO:Ce bars (type 2: 3 x 3 x 54.7 mm³)

Nan Lu (USTC)

testbeam at @CERN 2023

- PKU students participation in test beam at CERN H8
- provide performance result for final sensor design

TOFHIR

Test module

Rotatable table Protractor 04

Performance of prototype BTL detector in 2023

LYSO:Ce bars: type 1: 3.75 x 3 x 54.7 mm³ type 2: 3 x 3 x 54.7 mm³

Performance demonstrated. Next: production, assembly, and integration (2024-2025).

Nan Lu (USTC)

BTL module

12 modules + FE electronics form one readout unit

72 trays in BTST structure \rightarrow 166k LYSO bars, 332k readout channels

Nan Lu (USTC)

CHiP Cross-Strait Workshop on Advanced Detectors and Technologies, 06/2024

18

Cooling plate production

- Peking University produced 5 sets of cooling plots
- Sent to CERN, Milano, University of Virginia and Caltech for assembly and cooling test

Nan Lu (USTC)

BTL assembly and integration

- BTL will be attached to the inner wall of the Tracker Support Tube
- Assembly procedures and mechanical structures are well advanced and moving towards production and installation

Nan Lu (USTC)

ETL

ETL detector layout

Each endcap is comprised of 2 disks

- 16x16 LGAD, bump-bonded to the ETL read-out chip (ETROC)
- providing up to two measurements (50 ps/hit) per track (40 ps)

Coverage:

- z = 3 m from pp interaction, supported on HGC nose
- coverage 1.6 < |η| < 3.0
- 0.315 m < R < 1.2 m

ETL Detector Layout

Nan Lu (USTC)

ETL sensor: LGAD

CMS ETL LGAD sensor requirements

- 1.3 x1.3 mm² pads
- gain 10-30
- time resolution < 50 ps (per/hit) @ 1.7x10¹⁵ n_{eq}/cm²
- depletion region thickness: 50 μm
- ETL need 8.6 million channels
- ETL will comprise ~ 35k LGAD sensors (20% spare sensors included)
 - never been done in large areas before
 - need custom ASIC (ETROC)

A wafer of the FBK UFSD4 production

ETL LGAD schedule and QA/QC plan

- 2023: Market Survey completed, three vendors identified
- 2024: Freeze LGAD specifications + define quality management (QA/QC) procedures for the sensors production → Invitation to Tender and final selection of the vendor(s)
- 2025: Beginning of the sensor production for ETL

More information: <u>link</u> to Federico Siviero's talk at TREDI 2024

Nan Lu (USTC)

25

Performance of prototype ETL detector

120 GeV proton Beam

 Test results with ETROC1 wire-bonded to LGAD sensor demonstrate expected performance.
 Ch 3 2 1

 Extensive testing of ETROC2 prototypes with bump-bonded sensors underway. Initial results confirm measurements with ETROC1.

Nan Lu (USTC)

MTD-ETL contributions from USTC&South China Normal University&Shandong University

- Large LGAD matrix 16x16
 characterization
 - https://doi.org/10.1016/ j.nima.2022.167008
- Preparing for LGAD QC center for production
- Contribution to Front-end electronics production and testing

MTD-ETL contributions from USTC&South China Normal University&Shandong University

Nan Lu (USTC)

28

CMS MIP timing detector is progressing well and will meet TDR performance with a time resolution of 40-70 ps for MIPs

- A broad impact on CMS HL-LHC physics potential
- Sensor technology: LYSO:Ce crystals readout by SiPM for barrel, LGAD for endcap detectors
- Barrel timing layer starting production now, installation starts in 2025
- Endcap timing layer in last prototyping phase, installation to start in 2027

Thank you!

Nan Lu (USTC) CHiP Cross-Strait Workshop on Advanced Detectors and Technologies, 06/2024

30

backup slides

 Nan Lu (USTC)
 CHiP Cross-Strait Workshop on Advanced Detectors and Technologies, 06/2024
 31

CCMS, which we have a second s

Tagging jets originating from bottom-quark

- Improve b-jet tagging efficiency by 4–6% barrel (5–7% endcap) by reducing spurious secondary vertices
- caused by tracks from pileup interactions.

MTD Physics Potential

• 10 - 20% gain in di-Higgs significance

35 ps BTL, 35 ps ETL					
Channel	No MTD	ETL Only	BTL Only	MTD	
bbbb	0.88	0.90	0.93	0.95	
bb au au	1.30	1.38	1.52	1.60	
$bb\gamma\gamma$	1.70	1.75	1.85	1.90	
Combined	2.31	2.40	2.57	2.66	

DP-Update_MTD_physics_case_v7: https://twiki.cern.ch/twiki/bin/viewauth/CMS/AN-22-060

MTD Test Beam Setup

- Time resolution measured against reference timing detector (Photek 240 microchannel plate, time resolution ~12 ps)
- Tracking of charged particles by precision telescope, 0.2 mm position resolution

Nan Lu (USTC)

BTL test beam

Nan Lu (USTC)

Nan Lu (USTC)

SiPM and PMT pulse shape from test beam

TECs

TEC mechanical specifications

Nan Lu (USTC)

Requirements of the MIP timing detector

	Barrel Timing Layer (BTL)	Endcap Timing Layer (ETL)
Coverage	$ \eta < 1.5$	$1.6 < \eta < 3.0$
Surface Area	$38 m^2$	$12 m^2$
Power Budge	$0.5 kW/m^2$	$1.8 \ kW/m^2$
Radiation Rose	$\leq 2\times 10^{14} n_{eq}/cm^2$	$\leq 2\times 10^{15} \; n_{eq}/cm^2$

BTL: lutetium-yttrium orthosilicate crystals activated with cerium (LYSO:Ce) crystal read out with Silicon Photomultipliers (SiPM)

ETL: two disks of Low Gain Avalanche Detectors (LGAD), same sensor technology as ATLAS High Granularity Timing Detector.

Low Gain Avalanche Detectors (LGADs)

- LGAD: ultra-fast silicon detectors with a highly doped p+ gain layer for charge multiplication. Gain ~10-30
- Technology choice of ATLAS High-Granularity Timing Detector (HGTD) and CMS ETL

LGAD silicon sensors:

- signals that are a factor of 10-20 larger than traditional silicon detectors
- maintaining very low noise
- fine segmentation
- thin sensor

Very good S/N: 5-10 times
 better than current detectors

Precision timing at low power: ETROC ASIC

Performance specifications:

- TSMC 65nm technology, 100 MRad (TID spec)
- Low noise and fast rise time
- Low power: \leq 4 mW / channel at end-of-life
- ASIC contribution to time resolution ≤ 40 ps at end-of-life

ETROC0: single analog channel ETROC1: with TDC, 4x4 channel-clock tree ETROC2: full size, full functionality, testing now! ETROC3: final chip, submit next year

SiPM and PMT pulse shape from test beam

Nan Lu (USTC)

Precision timing in high radiation environment: LGAD sensors

Worked with multiple vendors to optimize LGAD arrays.

• Excellent uniformity, fill-factor, and production yield (>70%) per wafer.

Increase bias voltage to maintain gain after irradiation.

Test beam studies show sparking damage to sensors for E-field above 11.5 V/μm.
Prototype LGAD sensors characterized before and after irradiation proven to meet ETL requirements (>8 fC) for E-fields below 11.5V/μm.

Spark damage (microscope)

ETL sensor modules

ETL sensor 16x16 LGAD, bump-bonded to ETROC ETL requirement:

- time resolution < 50 ps/hit, 40 ps/track (two ETL disks)
- LGAD deliver > 8 fC

