

Belle II related hardware Experiences

- CDC Front-end Electronics
- BEAST2 Background Monitor
- Neutron Detector
- LYSO Light Yield Determination
- Beam Position Monitor
- Future Prospects

Min-Zu Wang representing the Belle II NTUHEP team 王名儒 台灣大學高能實驗團隊

海峽兩岸尖端探測器與技術交流研討會議

Quality assurance of CDC ASIC and FE

CDC ASIC

- ✓ total 3147 chips tested
- ✓ 2833 pass online QC selection (90%)
- \checkmark 2131 selected for production

CDC FE

- ✓ designed by KEK, assembled in Taiwan
- ✓ 48 channels (6 ASIC)/FE.

 \checkmark 330 board produced and tested. (299 FE needed for commissioning)

2017 GCR

 $3\pi/2$

✓ QC completed in early 2015, installation done in Jan. 2016

CDC trigger system and GDL

(NUU/NTU)

CDC FE (KEK/NTU)

UT3 (KEK)

292 x FE: hit information from detector (KEK/NTU)

- 73 x merger: collection of hits from FE (NUU/NTU)
- 9 x TSF: track segment composition
- 4 x 2D: 2D track finder (FJU/NTU/KIT)
- 4 x 3D: 3D track finder using TS matching algorithm (KU/NTU)
- 4 x NN: 3D track finder using neuro-network algorithm
- 1 x ETF: event time finder

GRL: global rec. Logic (NTU, new in Belle II) GDL: global decision logic (NTU)

data trasmission (NTU, FE \rightarrow GDL < 4.4 µs) Belle II link to DAQ for monitoring (NTU)

A home-made protocal made to satisfy the latency constraint.

Protocol	Line rate	userclk	Hardware link	Latency (# of userclk)	Latency (ns)
Aurora 8B/10B	5.08 Gbps	254 MHz	GTX – GTX	47 ~ 48	185 ~ 190
Raw-level 8B/10B	5.08 Gbps	254 MHz	$GTX \rightarrow GTX$	33 ~ 34	133 ~ 134
	5.08 Gbps	254 MHz	$GTH \rightarrow GTX$	33 ~ 34	133 ~ 134
	5.08 Gbps	254 MHz	$GTH \rightarrow GTH$	23 ~ 24	91 ~ 95
	5.08 Gbps	254 MHz	$GTX \rightarrow GTH$	23 ~ 24	01-05
Aurora 64B/66B	10.16 Gbps	158.75 MHz	GTH – GTH	47 ~ 48	296 ~ 302
Raw-level 64B/66B	11.176 Gbps	169.33 MHz	GTH – GTH	18~19	106 ~ 112

Boards installed and ran smoothly

BEAST2: background monitoring system

KEK on-site LED + source calibration for Phase 1 operation

Home-made LED pulsing module

Firmware for luminosity and background monitoring

Accumulated charges w.o./with ⁹⁰Sr source Good light-tightness for low background level

1 µ Ci ⁹⁰Sr

Neutron flux monitoring for the proton-therapy environment

Neutron detector protype sensor ⁶LiI(Eu)

Calibration by different radioactive sources and PE shielding

Tested with strong source at INER

LYSO tests collaborated with Taiwan Applied Crystal

LYSO characteristics: decay times small response time jitter light yield

~40 ns O(2) ps ~28 photons/keV

Light yield measurement
Time jitter measurement (R.S. Lu's student)

Light yield measurement

• Method: calibration with single photon signal

due to the sensitivity and dynamic range, the measurements are done at two HV levels.

- ▶ measure the single photoelectron signal at HV_h, ADC_{single} (LED source)
- > measure the LYSO photoelectron signal, with Na-22 (511KeV) source , at HV_{ℓ}, ADC_{LYSO}
- \succ measure the gain difference between HV_h and HV_l, G_{HV}
- > estimate the PMT QE from its datasheet, $QE \sim 20\%$
- > assuming the emission light collection efficiency ~100%

```
The light output of LYSO:

LO_{LYSO}(photon/keV)

= \frac{ADC_{LYSO}}{ADC_{Single}} * \frac{G_{HV}}{QE*511}

HV_h = 2500V; HV_\ell = 1500V

G_{HV} = Gain(HV_h)/Gain(HV_\ell)
```


Light yield measurement

• ADC_{single} at HV_h (2500V):

first tuning the FGen to get the single photoelectron signal from blue light LED.

Light yield measurement

- $G_{HV} = Gain(HV_h)/Gain(HV_\ell)$ (determined by a moderate LED light ~ 10 photoelectron)
 - fit the spectrum peaks at HV_h and HV_l by Gaussian

 $G_{HV} = 73 \pm 1$

- ADC_{LYSO} at HV_{ℓ} (1500V)
 - > LYSO sample 3.0 mm x 20.0 mm x 3.0 mm (Ca), illuminated with Na-22

> wrapped with 4 layers of PTFE pipe sealant tape (acceptable and easiest to apply)

$ADC_{LYSO} = 74500 \pm 2119$

 \rightarrow LO_{LYSO} = 29 ± 1 photon/keV

* LYSO sample with other dimentionals and doppings are also tested preliminarily.

Proton beam position monitor

Proton beam monitor on the skin above cancer tumor

Sensitive area: 32+32 2D array of scintillation fibers Fiber ϕ 1.0 mm, outer jacket ϕ 2.2 mm Cover region: 70.4mm X 70.4 mm

Setup of beam test@ experimental hall at INER

Laser level position: Ch8

Gain caliobration and measured beam profile

8-channels with the same setup of scintillator fiber with transmission fiber

Fitted parameter (μ,σ) at scan from bottom to top

[19]

Versal project

Prospects

- KEK together with Japanese HEP community purchased a few evaluation kits of the Xilinx Versal series ACAP.
 - Plan: Common and general studies on the new technologies for future electronics device's R&D. Now we plan to use Versal for L1 TRG, DAQ or HLT purpose.
- · The features of different Versal series ACAP:
 - · Al engine: convenient interface to implement ML core into firmware.
 - High Bandwidth Memory (HBM).
 - Larger number of cells + High transmission bandwidth.

source: Xilinx website

Introduction

 LYSO: Lutetium-Yttrium oxyorthosilicate, Lu_{2(1-x)}Y_{2x}SiO₅:Ce:[M] Its properties strongly depend on the composition and manufacture process.

density	$\sim 7.1 \text{ g/cm}^3$	
refractive index	~1.8	
decay times	~40 ns	
small response time jitter	O(2) ps	
light yield	~28 photons/keV	(4xBGO; 75% of NaI(Tl))
peak wavelength emission	420 nm	
radiation length (511keV)	1.2 cm	
energy resolution	~10 %	
R _{Moliere}	2.07 cm	
hygroscopic	No	
radiation hardness	1x10 ^{6~8} rad	[<u>Shalom EO</u> and <u>SA Materials</u>]
price	~ \$100 /cm ³	

intrinsic radiation activity due to ¹⁷⁶Lu (about 2.6% in natural Lutetium).
 non-linear γ absorption (self-detection)