Stereo crystal ECAL design and simulation studies

2024/06/17 CHIP, NCU 2024/06/18 IOP. AS Workshop on Advanced Detectors and Technologies - 海峽兩岸尖端探測器與技術研訂會 **Particle Detector Development Status** Modern high energy physics experiments Calroimetry **Tracking Detectors Timing Detectors and Electronic**

CHIF

Lianyou Shan, Han Wang, Chaochen Yuan, <u>Huaqiao Zhang</u>, Xiao Zhao (IHEP, Beijing)

Jun. 17, 2024

Requirement of a CEPC PFA calorimeter

- CEPC Physics requirements
 - Precision measurements with Higgs and Z/W
 - Jet energy resolution (dEjet/Ejet- 3~4%)
- PFA based Calorimeter (CEPC)
 - Good Shower separation
 - Small Moliere radius (Dense detector)
 - High lateral granularity (~Moliere radius)
 - Good Energy resolution
 - Critical in some special process
 - Sophisticate algorithm
 - Multi-million channels(energy and timing)
 - Multi-Dimensional information

Available options for CEPC ECal

- Silicon tungsten ECal •
- Scintillator sampling ECal
- Dual readout calorimeter
- Homogenous Crystal ECal: long bar, Stereo

Long bar Crystal ECal

Stereo Crystal ECal: Try to get 3D shower with 2D readout

Stereo Crystal Ecal@CHiP

H. Zhang

Stereo Crystal Electromagnetic Calorimeter: Basic idea

- Traditional Crystal Ecal (CMS/BES...):
 - Crystal long bar pointing to interaction point (IP)
 - Slight twist to avoid escape of particles

• Stereo Crystal ECal:

- Crystal long bar not pointing to IP
 - Angle between Crystal long bar and det. radius is α_{s}
 - -90 <= α <= 90 degrees
 - α = 0; pointing to Z axis \rightarrow traditional
 - $\alpha = 0$: obtain sampling on R
- Number of sampling can be optimized
- Single-end readout on the outer surface w.r.t. IP
- Form circular structure with trapezoid crystal

Cylindrical coordinate

Stereo Crystal Electromagnetic Calorimeter: Design

- To improve the 3D position resolution
 - Pointing angle of even layers alone Ζ: α
 - Pointing angle of odd layers alone Z: $\alpha' = -\alpha$

Stereo Crystal Ecal@CHiP

H. Zhang

Analytical optimization of SCECal geometry

- 3 degree of freedom for a given inner and outer radius of barrel
 - Pointing angle: $\alpha = \left[\frac{\pi}{2}, \frac{\pi}{2}\right]$
 - Correlated with the crystal length: L_R
 - Number of sampling along R: $N_R = [0,1,2,3...]$
 - Correlate with the crystal size (typically ~1cm) along ϕ : L_{ϕ}
 - Crystal size along Z : L_z (typically 1 cm)

Only one freedom left, α or longitudinal sampling N_R

Design of Endcap SCECal

- Shelf like structure
- Each Super layer consistent of 30 layers of crystals
- Crystal pointing angle w.r.t. Z axis(beam)
 - One variant of crystal shape: Parallelagon
 - Even layers: α; Odd layers: -α
- Readout electronics at outer Z w.r.t. IP

Stereo Crystal Ecal@CHiP

Super layer

SCECal simulation using BGO crystal

- Simulation and reconstruction done using CEPCSW
 - Ideal Geometry implemented
 - Crystals(BGO) without wrapper/gap etc. (ideal situation)
 - Simulation readout using carloStep info (no digitization)
 - Threshold of readout energy is applied
- Energy, position resolution and separation of photon/pion:
 - Different R segmentations tested: 5/10/14 layers
 - 10 layers turn out to be the best
 - Different recontruction method:
 - Simplified reconstruction
 - End-to-End Machine learning
- The following study based on 10 layers segmentation on R
 - r₁=1.9 m, r₂=2.2m, Z=6.7 m; endcap not included yet. 26.7 X0 BGO
 - Crystal size: L_{ϕ} = [8.8-8.9]mm; L_Z =10mm; L_R =316 mm
 - Pointing angle: α=20°

Simplified Reco method for isolated particle

- Find a 2D Cluster, energy is the sum of crystals about 2 MeV
- Hit (red points): The cross point of two nearby cluster crystal
 - Geometric center of hit define its z, phi, R
 - Assign hit energy as sum of the two crossed crystals
 - Renormalize the total energy to the Energy of 2D cluster
- Cluster Phi/Z/R: energy weighted phi/Z/R of all hits

Performance of Energy and 3D positioning resolution

- Particle gun used: check resolutions as function of γ energy
- For 5GeV γ, phi: 0~360°, theta: 90°
 - ◆ Z resolution ~ 0.84 mm; Phi resolution ~ 1.9 mm
 - R resolution ~ 7.6 mm; Energy resolution 0.35%

H. Zhang

Stereo Crystal Ecal@CHiP

- Sample: ZH->2neutrinos + γγ at 240 GeV
- Energy, position reconstruction and separation using simplified reconstruction method described above
- Crystal energy threshold: 2 MeV/50MeV

Good BMR, more realistic simulation will give more reliable results

Stereo Crystal Ecal@CHiP

H. Zhang

Event display for shower seperation

5 GeV photon and 10 GeV pi-, 66mm

H. Zhang

Two 5 GeV photon, 165 mm distance

5 GeV photon and 10 GeV pi-, 195mm

Jun, 17 2024

Stereo Crystal Ecal@CHiP

Simplified Reco method for 2 particle separation

- Cluster splitting
 - For each layer (along Z): Find two locations with maximum energy deposition and separate them by the min. value between them
 - Merge clusters in individual layers use layer matching alg.

H. Zhang

• Criteria on delta phi according to its point angle direction

Separation between two 5 GeV photons

- Two 5 GeV photons, vary distance along phi between them
- Success reconstruction: 2 neutral particles, 3.3GeV<Eγ<6.6GeV for each photon

Separation between γ/π

- 5 GeV γ /10GeV π , vary distance along phi between them
- Success reconstruction: 3.3GeV<E_v<6.6GeV
- Different π/γ separation power: pointing angle / magnetic field

Stereo Crystal Ecal@CHiP

H. Zhang

γ/γ performance using CLUE algorithm

CLUE (CLUstering of Energy):

Current CMS HGCal reco. alg.

- Input parameters to determine cluster seeds, outliers and follower hits
- the cut-off distance in the calculation of local energy density (dc);
- the minimum density to promote a hit as a seed or the maximum density to demote a hit as an outlier (pc);
- the maximum distance for a hit to be linked to a nearest higher point (δο);
- the minimum distance for a local high density hit to be promoted as a seed (δc).

Separate the raw data into

CLUE clustering algorithm

Merge odd/even sub-Clusters

odd and even modules

[1] https://cds.cern.ch/record/2802590/files/CR2022_027.pdf

H. Zhang

Consistent with simplified method, further tunning possible

Stereo Crystal Ecal@CHiP

soience.1242072

Particle separation using ML

End-to-End method is used

CMS reconstruction of merged photons paper PRD 108, 052002(2023)

- 2 steps, one for classification, one for energy regression(max 2 obj. now)
- More complex NN is under investigation
 - Regression of 2D energy hit map of individual particle
 - Regression of 3D energy hit map of individual particle

H. Zhang

- Clustering
- PID
- Jet energy

With information from tracker and helps of PFA

Separation between two 5 GeV photons: ML regression

- Trained with 2 γ with energy(0-10] GeV and distances varis
- Significant improvement than simple clustering

Stereo Crystal Ecal@CHiP

Separation between γ/π : Calor only ML

- Trained with a sample of 1-10GeV γ, 2-20GeV π +, distance
 @calorimeter variated around 20 mm
- Applied to separate 5 GeV photon and 10 GeV π +
 - ~100% efficiency when > 100 mm distance

Stereo Crystal Ecal@CHiP

H. Zhang

Summary

- A new configuration of Homogenous Crystal Ecal is presented
 - Long crystal bar with 2D readout at outer end of ECal
 - Use stereo structure to obtain measurement on the 3rd dimension
 - Only one free parameter: easy to optimize
 - Only one variant of crystal, very uniform in phi, Z, and R
 - minimal dead regions, minimal ghost hits
 - ...
- Working principle is demonstrated with preliminary simulation
 - Good energy resolution on EM objects including $H \rightarrow \gamma \gamma$
 - Good separation between γ/γ and γ/π with Machine learning
 - 100% eff. @ 20 mm for γ/γ and @100mm for γ/π
 - PFA/ML jet boson mass resolution study is ongoing
- Optimization of crystal/readout
 - Starting from existing CEPC crystal Ecal R&D: BGO+SiPM
 - Further optimization to consider the large signal size

Stereo Crystal Ecal@CHiP

H. Zhang

Analytical formular for SCECal geometry

- 3 degree of freedom for a given inner and outer radius of barrel
 - Pointing angle: $\alpha = [0, \frac{\pi}{2}]$
 - Correlated with the crystal length: L_R
 - Number of sampling along R: $N_R = [0,1,2,3...]$
 - Correlate with the crystal size(typically ~ 1 cm) along ϕ : L_{ϕ}
 - Crystal size along Z : L_z (typically 1 cm)
- $L_R = \sqrt{r_2^2 r_1^2 + \sin(\alpha)} r_1 \cos(\alpha)$
 - Crystal bar open angle along ϕ : $\phi_c = acos \frac{r_2^2 + r_1^2 L_R^2}{2*r_1*r_2}$
- Total number of crystals along $\phi: N_{\phi} = N_R * \frac{2 * \pi}{\phi_c}$
- Shower depth(S_n) and *crystal size* L_{ϕ}^{n} along R at nth sampling:

Jun, 17 2024

•
$$S_n = F_{n+1} - F_n; F_n = r_1 * \frac{\sin(\alpha)}{\sin\left(\alpha - n * \frac{\phi_c}{N_R}\right)} - 1; L_{\phi}^n = S_n * \sin(\alpha - n * \frac{\phi_c}{N_R})$$

Stereo Crystal Ecal@CHiP H. Zhang Jun, 17 2024

n. Zhang

Configuration of 5/10/14 layers along R

- Taget: change layers along R, keep similar Z/phi segmentation
 - 5 layers: $\alpha = 10^{\circ}$; crystal size: [9]*10*304 mm³, n = 1309 * 671;
 - 10 layers: α=20°; crystal size: [8.8-8.9]*10*316 mm³, n = 1276 * 671
 - 14 layers: α=30°; crystal size: [9.1-9.4]*10*339 mm³, n = 1141 * 671
- Simulated 30 GeV photon pointing at theta = 90, phi = [0-360]
- Simpler clustering algorithm with threshold of 1 MeV
- Energy/Z resolution do not change for different layers along R

E std. dev. ~0.5%@30GeV

Stereo Crystal Ecal@CHiP

H. Zhang

Ghost hits

- Confusion of red hit with yellow ones
 - Happens only in small phi/R range
 - R-range: 0-30CM
 - Phi-range: -4.5 cm +4.5 cm (10 layer)
- Large probability have hits in middle shower depth, small chance to have hits in small or large shower depth
- Big energy deposited in middle shower depth hit, small in inner/outer depth
- If ghost hits happens
 - largest change of phi: ~4.5 cm,
 - Largest change of R: ~15cm

Ghost hit in R*phi plane: 30cm * 9cm

SCEcal unit ghost hits area: $\sim 32/2^* 32/2^* \sin(2^*\alpha) = 160 \text{ cm}^2$; Long bar Ecal unit ghost hits area: $40^* 40 = 1600 \text{ cm}^2$

Stereo Crystal Ecal@CHiP

H. Zhang