ZDC ECal 1st Prototype Analysis and MC Status

ZDC ECal 1st Prototype

2024/07/05

MC Status

• Based on example :

https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/optical/OpNovice

This example presently illustrates the following basic concepts, and in particular (indicated with ***), how to use G4 for optical photon generation and transport. Other extended example of what is possible in Geant4 with optical photons can be found at examples/extended/optical/LXe and wls.

- Steps :
- Define crystal geometry
- Implement parameters of crystal
- Implement reflection surface
- Observe energy dump and optical photons in crystal

not yet done : Implement detector (SiPM), Implement SiPM parameters Read hits

2024/07/05

MC Simulation of LYSO Crystal

LYSO + MPT(w/ Birk's) Only LYSO before 100MeV e+ beam Optical photon SiPM (air for now) LYSO + MPT(w/ Birk's) + Reflection Surface Positron/Beam(purple) Electron(yellow) νοι Gamma (green) **Optical photon (cyan) Scintillation** Cherenkov Beam energy 50MeV-800MeV simulated. Photon reflection takes SiPM not simulated. lots of time to run

Material Property Table of LYSO

TABLE II

DENSITY, ELEMENTAL COMPOSITION, AND OPTICAL PROPERTIES OF THE LYSO MATERIAL IMPLEMENTED IN THE GEANT4 In-Silico TEST PLATFORM

Density (g/cm ³)	Elemental Refractive Composition Index		Optical Yield, Emission Spectrum, Absorption Length	Optical Decay Time Constants (ns)	Resolution Scale (at 511 keV)	Reference
7.4	$ \begin{array}{ c c c } Lu_{1.9}Y_{0.1}Si_1O_5 & \text{See Figure 15} \\ \hline (0.5\% \ \text{Ce doping}) & \end{array} $		30 Photons per eV, See Figure 15	Fast: 7.1 (7%) Slow: 33.3 (93%)	4.17	[47]

Fig. 15. LYSO scintillator crystal material refractive index (solid line), attenuation length (dashed line), and normalized scintillation photon emission intensity (dotted line) data sets implemented in the Geant4 *in-silico* test platform.

energy dependent

- Reference paper
 <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&ar</u>
 <u>number=8876605</u>
- Reference code

https://github.com/JunhaoWang511/MLCsimulation/ blob/master/src/MLCDetectorConstruction.cc

Reflection Surface with 3M ERS

3M[™] Enhanced Specular Reflector Film (ESR)

3M ID B5005047091

Product Description

3M[™] Enhanced Specular Reflector Films (ESR) maximize the recycling efficiency of liquid crystal display backlights. 3M ESR is >98% reflective across the visible spectrum and contains no metal.

Construction/Performance

Product	3M ESR 65 Auto	3M ESR 80v2 Auto
Reflectivity (minimum)	98%	98%
Caliper (microns)	65 +/- 4	82 +/- 4
Halogen Free	Yes	Yes

Reflectivity = 0.98

https://www.3m.com/3M/en_US/p/d/b5005047091/

Tracking and Steps in MC

*****	********	****	*****	*******	*******	****	*********	******	* * * * * * * * * * * * * * * * *	*******
* G4Tra	ack Inform ********	ation:	Particle :	= e+, T ********	rack ID = ********	= 1, Pa	rent ID = 0	*****	******	*******
Step# 0 1 2	X(mm) 0 -0.592 -1.25	Y(mm) 0 -1.04 -1.44	Z(mm) K -100 -77.1 -44.1	inE(MeV) 0.5 0.497 0.491	dE(MeV) 0 0.00269 0.00599	StepLeng 0 23 33.2	TrackLeng 0 23 56.3	NextVolume physWorld physWorld physLYSO	ProcName initStep eIoni _{ionization} Transportation	boundary
Exiti 3	ng from G4 -1.25	Scintilla -1.44	tion::DoI -44.1	t Numb 0.484	er0fSeco 0.00718	ndaries = 0.0143	1 56.3	physLYSO	msc Multiple Comp	ton scattering
:- :	List -1.25	of 2ndari -1.44	es - #Spa -44.	wnInStep= 1 2.83e-	1(Rest: 06 0	= 0,Along= opticalpho	= 0,Post= 1 oton	.), #SpawnTo EndOf2ndario	tal= 1 es Info	
	msc 2ndary -	Generated	scintiliation o	ptical photor	n 🤿 assign t	o new track,	1 rack ID = 2			
2024/0)7/05			ZDC ECal	1st Prototy	ype : MC ar	nd Analysis St	tatus		7/27

Step#	X(mm)	Y(mm)	Z(mm)	KinE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName
Θ	-1.25	-1.44	-44.1	2.83e-06	0	Θ	Θ	physLYS0	initStep
1	-1.9	3.56	-39.4	2.83e-06	0	6.95	6.95	physLYS0	Transportation boundary
2	-1.9	3.56	-39.4	2.83e-06	0	Θ	6.95	physLYSO	Transportation
3	-3.56	1.97	-38.4	2.83e-06	0	2.49	9.44	physLYS0	Transportation
4	-3.56	1.97	-38.4	2.83e-06	0	Θ	9.44	physLYSO	Transportation
5	-0.036	3.56	-36.7	2.83e-06	0	4.22	13.7	physLYS0	Transportation
6	-0.036	3.56	-36.7	2.83e-06	Θ	Θ	13.7	physLYSO	Transportation
7	-1.52	-3.56	-39.5	2.83e-06	Θ	7.79	21.4	physLYS0	Transportation
-					-	-		· · · · · · · · · · · · · · · · · · ·	
	5.50	-2.55		2.030-00	~	~	100	PHJ36130	
55	3.16	-3.56	-36.7	2.83e-06	0	0.753	199	physLYSO	Transportation
56	3.16	-3.56	-36.7	2.83e-06	0	Θ	199	physLYS0	Transportation
57	2.66	3.56	-35.9	2.83e-06	0	7.19	206	physLYS0	Transportation
58	2.66	3.56	-35.9	2.83e-06	0	Θ	206	physLYSO	Transportation
59	-1.57	-3.56	-37.4	2.83e-06	0	8.43	214	physLYS0	Transportation
60	-1.57	-3.56	-37.4	2.83e-06	0	Θ	214	physLYS0	Transportation
61	2.15	3.56	-28.8	2.83e-06	0	11.8	226	physLYS0	Transportation
62	2.15	3.56	-28.8	2.83e-06	0	Θ	226	physLYS0	Transportation
63	1.25	0.849	-28.8	2.83e-06	2.83e-06	2.86	229	physLYS0	OpAbsorption absorbed

For optical photons : no energy dump during the transportation steps until it is absorbed.

```
* G4Track Information: Particle = e+, Track ID = 1, Parent ID = θ
    **************************
      X(mm)
            Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName
Step#
                                                   physLYSO initStep
      -1.25
            -1.44 -44.1
                         0.484
                                  θ
                                             56.3
                                        θ
  з
Exiting from G4Cerenkov::DoIt -- NumberOfSecondaries = 1
Exiting from G4Scintillation::DoIt -- NumberOfSecondaries = 1
      -1.23
            -1.44
                  -44.1
                         0.463
                               0.0207
                                     0.0154
                                             56.3
                                                   physLYSO msc
  4
  :---- List of 2ndaries - #SpawnInStep= 2(Rest= θ,Along= θ,Post= 2), #SpawnTotal= 2 -----
     -1.24 -1.44 -44.1 2.92e-06
                                  opticalphoton
  :
      -1.23 -1.44 -44.1 2.94e-06
                                  opticalphoton
  :
                ----- EndOf2ndaries Info ------
        . . . . . . . . . . .
             ******
* G4Track Information: Particle = opticalphoton, Track ID = 4, Parent ID = 1
            Step#
      X(mm)
            Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName
            -1.44 -44.1 2.94e-06
                                                  physLYSO initStep
      -1.23
                                  θ
  θ
                                        θ
                                               θ
```

Optical photons are generated as positron passes through LYSO

Step#	X(mm)	Y(mm)	Z(mm) Kir	nE(MeV)	dE(MeV)	StepLeng	TrackLeng	NextVolume	ProcName	
24	-1.26	-1.47	-44.1	0.104	θ	0	56.7	physLYSO	initStep	
25	-1.25	-1.46	-44.1	0.1	0.00376	0.00318	56.7	physLYS0	Cerenkov	
26	-1.25	-1.46	-44.1	0.0987	0.00147	0.00119	56.7	physLYS0	Cerenkov	
27	-1.25	-1.46	-44.1	0.0981	0.000591	0.000424	56.7	physLYS0	Cerenkov	
28	-1.25	-1.46	-44.1	0.0981	3.17e-05	0.000119	56.7	physLYS0	Cerenkov	
29	-1.25	-1.46	-44.1	0.0981	5.61e-05	0.000102	56.7	physLYS0	Cerenkov	
30	-1.25	-1.46	-44.1	0.098	8.28e-05	7.36e-05	56.7	physLYS0	Cerenkov	
31	-1.25	-1.46	-44.1	0.098	0	3.09e-05	56.7	physLYS0	Cerenkov	
32	-1.25	-1.46	-44.1	0.098	2.26e-05	3.09e-05	56.7	physLYS0	Cerenkov	
33	-1.25	-1.46	-44.1	0.0976	0.000399	1.92e-05	56.7	physLYS0	Cerenkov	
34	-1.25	-1.46	-44.1	θ	0.0976	0.0297	56.7	physLYSO	eIoni	
:-	····· List	of 2ndarie	s - #Spawr	nInStep=	8(Rest	= 0,Along	= 0,Post= 8), #SpawnTot	tal= 8	
:	-1.25	-1.46	-44.1	3.le-	06	opticalph	oton			
:	-1.25	-1.46	-44.1	3.12e-	06	opticalph	oton			
:	-1.25	-1.46	-44.1	3.26e-	06	opticalph	oton			
:	-1.25	-1.46	-44.1	2.88e-	06	opticalph	oton			
:	-1.25	-1.46	-44.1	2.68e-	06	opticalph	oton			
:	-1.25	-1.46	-44.1	2.99e-	06	opticalph	oton			
:	-1.25	-1.46	-44.1	2.79e-	06	opticalph	oton			
:	-1.25	-1.46	-44.1	2.7e-	06	opticalph	oton			
:-								EndOf2ndari	es Info	<u></u>
35	-1.25	-1.46	-44.1	θ	θ	dE e	56.7	physLYSO	Scintillatio	n
:-	····· List	of 2ndarie	s - #Spawr	nInStep=	2(Rest	= 2,Along	= θ,Post= θ), #SpawnTot	tal= 10	
:	-1.25	-1.46	-44.1	0.5	11	g	amma			
:	-1.25	-1.46	-44.1	θ.5	11	g	amma			
: -					-			EndOf2ndari	es Info	

Scintillation generates extra energy doesn't come from beam = 0.511MeV (mass of electron)

Energy Deposition

- Most energy are carried by beam and electron.
- Extra energy contribution from gamma.
- Optical photons carry very small amount of energy, ~0.01%.

Optical Photons

100 MeV positron, LY = 50/MeV

- Energy spectrum of scintillation photons is the same as the setup in MPT.
- Energy spectrum of Cherenkov photons is flat.
- Energy spectrum of optical photons doesn't change w/ the injected beam energy.
- Increase beam energy only increase number of scintillation photons and total energy deposition of scintillation photons, not their energy spectrum.

Energy and Optical Photons

100 MeV positron, LY = 500/MeV

Energy deposition in tower (MeV)

Energy deposition in crystal is linear with number of photons generated when E<100MeV.

Effects of Light Yield Setting and Birk's Law

Data and MC comparison

Beam Test

Beam energy VS Emax

- We performed beam test w/ 1st prototype at ELPH on Feb, 2024.
- Positron beam w/ beam energy 50MeV to 800MeV
- Nonlinearity between beam and measured energy is observed.

Data and MC Comparison

- MC only simulates LYSO crystal (Compare w/ energy deposited).
- Saturation effect of SiPM is important and should be described.

Description of SiPM

https://arxiv.org/abs/1510.01102

Data and MC Comparison after applying SiPM Behavior Curve to MC

Energy Regression

Energy Regression Calibration with Machine Learning Method

- Purpose of energy regression : Energy deposited in the calorimeter may not always be directly proportional to the energy of the incident particle due leakage, noise, etc. By accurately estimating the particle energy, energy regression improves the energy resolution and energy reconstruction.
- Machine learning techniques can be used as a method to perform the energy regression.
- (1) Collect large MC sample and select training parameters (Emax, E3x3, E5x5) target parameters (ratio of Ebeam/E5x5).
- (1) Model training with large MC sample.
- (2) Validate trained model with separated MC sample.
- (3) Apply the trained MC to data.

Attention : One have to make sure **MC and data are agreed at certain level. We are still working on it!**

XGBoost (Extreme Gradient Boosting)

➔ Final output : The predictions of all trees/classifications are combined to produce the final output.

Reference : <u>https://xgboost.readthedocs.io/en/stable/tutorials/model.html</u> <u>https://docs.aws.amazon.com/zh_tw/sagemaker/latest/dg/xgboost-HowItWorks.html</u>

2024/07/05

Training Conditions

- XGBoost in Python
- Training MC sample
- ① 197MeV
- ② 30k events
- (20% test, 80% training)
- Training variables (X):
- ① E1x1
- ② E3x3
- ③ E5x5
- ④ E1x1/E5x5
- ⑤ E1x1/E3x3
- 6 E3x3/E5x5
- Target variable (Y) :
- ① Ebeam/E5x5

Validate ML Model

- Among all the training variables, E5x5 is the most important one.
- The training output shows reasonable prediction of target variable, Ebeam/E5x5, with less than 5% uncertainty.

Impact of Energy Regression

- A new MC sample generated w/ 197MeV positron beam w/ 30k events.
- After applying energy regression, the beam energy is will reconstructed by ML model and energy resolution improved from 5% to 1%.

Impact of Energy Regression

- New MC samples with energy beam = 197MeV to 823 MeV are tested.
- Ebeam is well predicted and energy resolution is also improved after regression regardless the beam energy.

Summary and To Do

