Calorimeter Design Tool in High Energy Physics

Detector Hyperparameter

 Scintillation crystals (LYSO, BGO, ...) and geometries
* Electronic type (PMT, SiPM, ...) and geometries Feedback

- * Physical requirement (energy resolution, ...) <
Setting
= QOptimization Method: Grid search, ...
\ 4
Physical Simulation » Hardware Resources: CPUs
* Simulate the passage of particles Setting et
. es
through materials < | Physical Reconstruction
\ 4
= Monte Carlo Method: Geant4 toolkit . i
Electronic Simulation/Calibration CIustfermg‘(# aiShosei)
> Hardware Resources: CPUs - : *  Classification (p, e ...)
— * Simulate electronic response *  Regression (energy ...)
* Calibrate signal . )
Data Fl =  Traditional Algorithms:
Training/Test Data Flow | « Traditional or DL Algorithms: atarow DBSCAN,
To solve the nonlinear relationship Empirical Parametrization Equations
J between optical photons and energy = DL Algorithms:
DL-based Fast Simulation deposition. Convolution Neural Networks (CNNs),

Graph Neural Networks (GNNs),

» Hardware Resources: CPUs, FPGAs
Transformer

* 100 to 1000 faster than the physical simulation

= DL Algorithms:

Generative Adversarial Networks (GANs) Training
Diffusion Model

» Resource requirement: CPUs, GPUs, FPGAs

\ 4

» Hardware Resources: GPUs .

Self Supervised Pre-training Method: Contrastive Learning (CL) and Masked Image model (MIM)

Contrastive Masked Autoencoders are Stronger Vision Learners
* Parameter-Efficient Fine-Turning (PEFT):

Parameter-Efficient Fine-Tuning Methods for Pre-trained Language Models: A Critical Review and Assessment
* Data Augmentation: Adding noise, cropping, flipping, ..., GANs



https://www.computer.org/csdl/journal/tp/2024/04/10330745/1SrO8maFmFy
https://arxiv.org/abs/2312.12148

Generative Diffusion Models on Graphs: Methods and Applications
https://arxiv.org/abs/2302.02591

tion [De Cao and Kipf, 2018]. Although these deep gener-

ative methods have achieved promising performance, most of Encoder Decoder |
them still have several limitations. For example, VAE ap- ///_\\ T ae(alx) polxlz) gjj%

proaches struggle with the estimation of posterior to gener- High

putation to achieve permutation invariance because of the (a) Variational AutoEncoders

o . ) Quality Diffusion
ate realistic large-scale graphs and require expensive com- GANSs / Samy Models

likelihood-based method [Bond-Taylor et al., 2021]. Most —

GAN-based methods are more prone to mode collapse with ,Eig:& .

graph-structured data and require additional computation to Fa st\ Mode I ' True
train a discriminator [De Cao and Kipf, 2018; Wang et al., ( Sampling CETEIEL i} | Discriminator

2018]. The flow=baseéd generative models are hard to fully \ (R E) l Coseracod )

learn the structural information of graphs because of the con- \ —_—— 2 fem) T ;gifﬂ B
straints on the specialized architectures [Cornish ez al., 2020]. V AEs 4

Thus, it is desirable to have a novel generative paradigm for W

deep generation techniques on graphs. . .
(b) Generative Adversarial Networks (GAN)

Forward Diffusion (noise <— data): q(Gt|Gt_1)
Add noise o I
Graph — . -«— T — f ::;V nverse
Diffusion -> e v s _— >
Denonse

Reverse Diffusion (noise — data): po(Gt_1 |Gt)

(c) Normalizing Flows

Molecule «— /I 0y T, . Forward: q(X¢|x¢—1)
L3 B 2 . . R S s - » ol

Modeling . . Add noise

o .
----------------------------------------------------------------------------------------------------------------------------------------- gﬁ:&& Go G, Gr

- L : ( €--ee- <--e-- <o €-----

Protein A v N B2 Denoise

Mo £ P 5 q e Reverse: po(xt—1|xt)

odeling o SEe ML - = ) 3 o 7
-, --> > 7

(d) Diffusion models
Figure 1: Deep Generative Models on Graphs.

An illustration of diffusion models on molecular and protein generations.


https://arxiv.org/abs/2302.02591

A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation
https://arxiv.org/abs/2406.12898

These methods have demonstrated remarkable performance in generating showers faster than Geant4
across various ranges of incident energy for primary particles, although less precise than Geant4.
While GAN-based models can generate showers faster than other generative models, it is challeng-
ing to train GANs due to the difficulty of converging and ‘mode collapse’. VAE-based models
can generate samples of calorimeter showers faster than Geant4 and GAN. However, they lack in
quality of samples. Nevertheless, VAE-based models are used along with other GAN-based mod-
els [9, 10, 20], Normalizing Flow (NF) [25, 17] and Diffusion [49] models. Among the generative
methods, NF and Diffusion-based models have shown promising performance in generating shower
samples with high fidelity. However, Diffusion-based models are slower in sampling, and NFs re-
quire a constraint bijective mapping making flow models restrictive. Refer to Appendix-A for a
more comprehensive discussion of these models.

This study fills the gap by evaluating three different state-of-the-art calorimeter shower simulation
models using a comprehensive set of metrics. The three models evaluated are CaloDiffusion [5],
EaloScore [51] and EaloINN [25]. We chose CaloDiffusion and CaloScore because of their ability
to generate high-quality samples and CaloINN because of its faster sample generation capability.
Furthermore, these are the three open-sourced implementations that work.

6 Conclusion

"Fast Simulation" using deep-generative models is pivotal in overcoming computational bottlenecks
of the calorimeter shower generation. In this study, we conducted a rigorous evaluation of three
generative models using standard datasets and a diverse set of metrics derived from physics, com-
puter vision, and statistics. Additionally, we explored the impact of using full vs. mixed precision
modes during inference on GPUs. Our evaluation revealed that the CaloDiffusion and CaloScore
generative models demonstrate the most accurate simulation of particle showers, yet there remains
substantial room for improvement. We identified areas where the evaluated models fell short in

[JGeant41CaloINN ' ' CaloDiffusionZ1CaloScore C1Geant4 1CalolNN  CaloDiffusionCaloScore

107 o ; .10t 10t 10
1o I"’ 1073 1o 2 107! 107! 1071
107! 102 107t 102 107! 107 10-3 10-3 I 10-3
layer 0-4 layer 5-9 layer 10-14 Layer0-4 Layer5-9 “"Layer 10 - 14
10t 10t 10t 101!
10-3 1072 1073 \ 2 101 101 v 1011
10-7 5 - =
107! 10? 107! 10? 107! 10° 1073 1073
layer 15-19  layer 20-24  layer 25-29  Layer15-19layer 20 - 24 "Layer 25 - 29
10! 10t . 10! 10t 1014
)
1073 \ 1073 \ o \ < 107 107! 10-1!
07T 10 0T 102 06T 102 07 1 1075 1 107 1
layer 30-34 layer 35-39 layer 40-44 Layer 30 - 34 Layer35-39 Layer40-44

(a) Layer energy distribution (GeV) (b) Distribution of sparsity

Figure 1: Histogram of two physics observables for dataset 2.

1Geant4 1 CaloDiff(Mix) - CaloDiff(Full) C1Geant4 (I CaloDiff(Mix) - CaloDiff(Full)
107 1074 It 101 Al 104 |10 |
10-3 [ 3] wf 1072 D 7 “ // — ~
167 107 10 07 107 gl 10-2 1% 1030
layer 0-4 layer 5-9 layer 10-14 Layer 0 -4 Layer5-9 “Layer10- 14
.10 ) 104 )10 )
107 107%) 1072 2 107 J'/W’W |10 /’w/ w7
= = = -3 rw' sl ’ -3 hlwi/
101 102 101 10?2 101 10? 10 10 10
layer 15-19  layer 20-24  layer 25-29  Layer15-19-layer 20 -24 "Layer 25 - 29
10t 101 10t I 101 I 10 )
) prd / f
1073 10-31 1072 <107t / 107 / 107 l/
4 ) g ’\"?":d adirhs
o 1182 o “;02 o 10-3 on'l il ! 10-3 L I 10-3 0..l T Tiukl !
layer 30-34 layer 35-39 layer 40-44 Layer 30 - 34 Layer 35-39 Layer40-44

(a) Layer energy distribution (GeV) (b) Distribution of sparsity

Figure 5: Comparison of histogram of two physics observables with dataset 3 between full precision
and mixed precision mode using CaloDiffusion.


https://arxiv.org/abs/2406.12898

Dataset simulated
with Geant4

Reconstruction of electromagnetic showers in calorimeters using Deep Learning
https://arxiv.org/abs/2311.17914

Seed finder

Input to

center finder
Take only windows that

Initial input

Energy
output

7x7 window
(>0.5 GeV)

pass threshold (0.3)
_

Center finder

Apply CNN independently on
each input window

Message passing
(learning about the
neighbors)

Dense layers

(applied separately) \
| (o y)en, p

> 0.5 probability
from Seed Finder

+ Flatten

Dense: 2400

Dense: 250

+ LeakyRelLU
+ Dropout (0.3)
Dense: 1

+ sigmoid

i

Dense: 500

+ LeakyRelLU
+ Dropout (0.1)
Dense: 2

+ tanh

+ Dropout (0.1)

One by one
No connection
between clusters

input - all the clusters

that passed threshold

from one event (window)

o]

>

Vector of latent

Final output
features

1

1

1

:

] 1
(x,y), en, p 1

L] / !
1

1

1

1

1

Double pass for dr < 0.3

Fig. 6 Flow chart of the DeepCluster model. 7 X 7 seed windows are first selected around
all possible seeds (>0.5 GeV) in the event. They are separately passed as input to the seed-
finder NN predicting P,eeqsr for each seed window. Selected seed windows with Pieeqsp >
are combined into groups of 4 with their neighbors and passed to center-finder NN
which predicts the coordinates T ..o, Yrecos the energy E..., and a new seed score PseedCF
for each seed window.

thr

PseedSF

)

/3
E

relative energy resolution (

1072

T T T
PFClustering; single-photon L
DeepCluster; single-photon g
PFClustering; two-photon
DeepCluster; two-photon

(1, 101

160, 100]
Egen [GeV]

[10,I20] [20,I 60]

energy median [GeV]

1.5 T T T
----- PFClustering; single-photon -
>>>>> PFClustering; two-photon o
1.0 —4— DeepCluster; single-photon ’,/" B
—4— DeepCluster; two-photon 4,/"
05F .
0.0 i’ it :; B
-0.51 B
-1.0 E
_l 5 L 1 1 1
"7[1, 10] [10, 20] [20, 60] [60, 100]
Egen [GeV]

Fig. 9 Relative energy resolution (left) and energy median (right) obtained with the Deep-
Cluster model and PFClustering algorithm applied on the single- and two-photon test
datasets. The results are shown in the bins of generated energy Egen.

J

Coordinate
output

Filter: 128
Kernel: 3x3

+ LeakyRelLU

+ BatchNormalization

Filter: 256
Kernel: 3x3

+ LeakyReLU

+ BatchNormalization

Fig. 3 Center-finder NN architecture. The seed windows are passed separately as input
to the network. Each input is processed by two convolutional layers until the vector of
summary features is extracted. This vector is passed through one dense layer and further sent
separately to two different branches (coordinate and energy predictions). In each branch, it
passes through two additional dense layers. Detailed information on the number of nodes at
each layer is presented in the figure.

Mo Pgen = [1, 15] GeV Mo Pgen = [15, 30] GeV Mo Pgen = [30, 60] GeV

» 1800 - : o 200 : :
L 600k I DeepCluster | Y 600+ I DeepCluster 1 @ I DeepCluster
[ ) o ) o 175¢ A
£ [ PFClustering IS [ PFClustering IS I PFClustering
g 1400 1 @ 500 1 @ 150}
(2] n n
400 1 125} |
100
300 g
75F g
200 B
501 g
100 1 P 1
200 300 %% 100 200 300 %% 100 200 300
my, [MeV] myy [MeV] m,, [MeV]

Fig. 12 m~, mass distribution reconstructed with DeepCluster model and PFClustering
algorithm on the mp dataset. The results are shown in bins of the generated momentum pgen
of the mg.


https://arxiv.org/abs/2311.17914

Design of a SiPM-on-Tile ZDC for the future EIC, and its Performance with Graph Neural Networks

Abstract

https://arxiv.org/abs/2406.12877

We present a design for a high-granularity zero-degree calorimeter (ZDC) for the upcoming Electron-Ion Collider (EIC). The design
uses SiPM-on-tile technology and features a novel staggered-layer arrangement that improves spatial resolution. To fully leverage
the design’s high granularity and non-trivial geometry, we employ graph neural networks (GNNs) for energy and angle regression as
well as signal classification. The GNN-boosted performance metrics meet, and in some cases, significantly surpass the requirements
set in the EIC Yellow Report, laying the groundwork for enhanced measurements that will facilitate a wide physics program. Our
studies show that GNNs can significantly enhance the performance of high-granularity CALICE-style calorimeters by automating
and optimizing the software compensation algorithms required for these systems. This improvement holds true even in the case of
complicated geometries that pose challenges for image-based AI/ML methods.

ZDC neutron simulations,
energy reconstruction

ZDC neutron simulation
R

ZDC m°%y classification
L

100 ==

---- Simple o cut, y
— GNN,y
---- Simple o cut, m°

= [T T T T » —]
) 17.5 N ¢ ZDC sim (strawman recon) ¢ ZDC sim (GNNrecon) 1
E 15.0 P - fit: 54%/VE @2% -~ fit: 29%/VE @ 2% B
g s CALICE Fe/Sc data, 7~ CALICE Fe/Sc data, m~ ]
=3 I (uncorrected) (software-compensated) ]
=125 YR requi . ]
g le9f=e L reqﬂ'ement. ]
ur e, 50%/V E @5% ]
% 10.0F g i
I "ot
I qy‘ ~~~~~~
7.5 OO g T =
- OOy o T mmm—e
F *o-~l\.\. 0.0 N LD S
5.0 - .- ». - ®-. g o .
[ Fe20mm e B g g,

[ Sc3.0mm
2.5~ (64 layers)
I cell area 25 cm?

o
(=)
‘

o
T T

N
o
L

M[Erecol/Etrutn — 1 [%]

A
=)
—

Etrutn [GeV]

Figure 3: Energy resolution (top row) and scale (bottom row) obtained with
the strawman (open symbols) and GNN (filled symbols) for simulated single
neutrons. The resolutions are compared to those of the CALICE beamtest [17]
(orange squares) with (filled) and without (open) software compensation.

—20.0— —
g \ unstaggered 8
= o \ Fe 20 mm ; 05 &=
~ 17.5¢ \ S¢ 3.0 mm staggered, baseline é
o - \ (64 layers) ¢ staggered, HEXPLIT -
15.0F ‘P¢ ' cell area 25 cm? = staggered, GNN o)
e N —— fit: 0.63/v'E mrad 0.4
12.5F +¢ - YR requirement:% ]
i +4> e .1mrad |
1001 + ¢ \\\ YR stretch goal.T _,0'3
I T TS
AR A K el i
7.5} F "‘.,'+ o T RS ;o 2
5 \ ¢ o T —— Y-
N [ ] Y o R
5.0 I~ L..h-. ® ® 1
N T e o o Ho.1
25 - II‘.-.,-‘.-.--."- @ T R G i
: TS S
ST R NI RS R SRR R
0.0 0 50 100 150 200 250 300 0.0
Energy [GeV]

Figure 5: Position resolution for neutrons as a function of the generated energy.
Results are shown with an unstaggered layout (blue) and staggered layout with
the positions reconstructed with the baseline (orange), HEXPLIT (green), and
GNN (red) reconstruction algorithms.

-1
107'F — GNN, m° .
vy 1
acceptance bottleneck |

Efficiency of passing y selection

Y I N
1050 100

- ‘
200 250
Etruth [GeV]

P
150

Figure 9: Efficiency of classifying y (blue) and 7° (red) as y. The 7° rejection
efficiency has a bottleneck (green) at lower energies due to events with only
one photon hitting the ZDC. The green curve quantifies the fraction of events
where both decay photons hit the ZDC, and it hence shows the theoretical best
classification performance.


https://arxiv.org/abs/2406.12877

GenGNN: A Generic FPGAFramework for Graph Neural Network Acceleration
https://arxiv.org/abs/2201.08475

1 Introduction

Graph neural networks (GNNs) have become a powerful
tool for applying deep learning to solve tasks infilling graph
structures. Learning tasks for graphs can be applied at node-
level (e.g., presence of protein [1]), edge-level (e.g., drug-drug
interactions [2]), and graph-level (e.g, molecular property
prediction [3]). Representative applications of GNNs include
analysis of social networks and citation networks, recom-
mendation systems, traffic forecasting, LIDAR point cloud
segmentation for autonomous driving, high energy particle
physics, and molecular representations [4].

Targeting various applications, there is a huge demand
for GNN inference acceleration with diverse requirements.
For instance, point cloud segmentation and detection for
autonomous driving [5] and high energy particle physics [6]
require real-time processing; in a particular example, the col-
lision data from particle collider are collected every 25ns and
thus must be processed using GNNs within nanoseconds
with raw input graphs [7, 8]. For social network applications,
the size of the graphs to be processed is usually extremely
huge and the computation time and memory cost are signif-
icant; therefore, such applications are in demand for GNN
accelerators for large-scale graphs. Consequently, hardware
acceleration is critical to apply GNNs to these applications
and address real-time or large-scale computation.

The challenges and the limitations of existing acceler-
ators, however, are significant. First, GNN computation is
both communication-intensive and computation-intensive,
as also noted by previous literature [9-11], involving mas-
sive irregular memory access for message passing and heavy
computation for embedding transformation. Second, novel
GNN models are rapidly emerging while the accelerator
innovation is lagging behind. For instance, most state-of-the-
art GNN accelerators are tailored for graph convolutional
networks (GCNs) [9, 12, 13], which can be conveniently ex-
pressed as sparse matrix multiplications (SpMM). However,
the majority of GNNs are not suitable for Sp)MM because of
complicated operations such as edge embedding, attention,
mixed neighborhood aggregation, etc. Therefore, generic, ex-
tensible, and flexible acceleration frameworks are required
to rapidly adapt to evolving GNN models. Third, some ac-
celerators adopt graph preprocessing to employ data local-
ity [9, 14-17], while some apply graph partitioning relying
on the property of a fixed input graph (e.g., by analyzing the
adjacency matrix sparsity [13]). Such preprocessing or graph-
specific techniques are not feasible for real-time applications
with millions of input graphs with varied structures.

hls 4 ml



https://arxiv.org/abs/2201.08475

Self Supervised Pre-training Method: Contrastive Learning (CL) and Masked Image Model (MIM)
Contrastive Masked Autoencoders are Stronger Vision Learners

https://www.computer.org/csdl/journal/tp/2024/04/10330745/1SrO8maFmFy

Reconstruction Contrastive Loss
Loss

Pixel Feature Project
Decoder Decoder Head

Online Target

Encoder Encoder

Masked View Pixel-shifted View

Figure 1: Overview of CMAE. CMAE improves over
its MIM counterpart by leveraging contrastive learning
through novel designs.

https://arxiv.org/abs/2207.13532v2

Pixel Decoder

Online
Encoder Reconstruction
£ @~ Feature : Loss
s . e S Decoder
- t‘li
Masked image
r
Tz £ |
y : !
ke 4 : . |
~§ : " o Contrastive |
) Cl @ % Target Projection Loss |
! o ~ Encoder Head 1
B ' i
15
S | &
i ¥, I
R R . |
Pixel-shifted View 3‘{;}‘-‘

Figure 3: Overall pipeline. Our method contains three components: the online encoder, target encoder and online
decoder. Given a training image, it applies pixel shifting to generate different views, which are then fed into the
online and target encoders respectively. The online encoder randomly masks a fraction of the image patches
and operates on the visible ones. The target encoder operates on the whole view after pixel shifting. The pixel
decoder learns to reconstruct the input image from the image tokens (along with MASK tokens) provided by the
online encoder, while the feature decoder learns to predict the features of the input image for contrastive learning
with the target encoder output features. After the pre-training, only the online encoder is kept for downstream
applications.


https://www.computer.org/csdl/journal/tp/2024/04/10330745/1SrO8maFmFy

Parameter-Efficient Fine-Turning (PEFT):
Parameter-Efficient Fine-Tuning Methods for Pre-trained Language Models: A Critical Review and Assessment

s

Y \

Multi-Head Attention

¥

[

Adapter Network }

Layer Normalization

[
=
[

Feed-Forward Network ]

Adapter Network

g?(i

N

Layer Normalization j

\4

»
>

\ Down-projection /
y

E y
/ Up-projection '\

A

Nonlinear
Activation

A

(a) Sequential Adapter

https://arxiv.org/abs/2312.12148

-

: T

Multi-Head Attention

Hiddcn Statcs

%yi

[

Layer Normalization

Y

eed-Forward Netw mI\

%y_

{

P

Attention

Layer Normalization /

\ 4

Prefix-tuning

(b) Prefix-tuning

Hidden States

[ Multi-Head Attention

’T*

[ Layer Normalization

——

Y
[ Feed-Forward Network

| —

[ Layer Normalization ]

LoRA
LoRA
LoRA

Attention

Down- Up-
projection projection

(c) LoRA

Fig. 3: The detailed architecture of (a) Sequential Adapter, (b) Prefix-tuning, and (c) LoRA.


https://arxiv.org/abs/2312.12148

