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Generative Diffusion Models on Graphs: Methods and Applications
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Figure 1: Deep Generative Models on Graphs.

An illustration of diffusion models on molecular and protein generations.
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A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation
https://arxiv.org/abs/2406.12898

These methods have demonstrated remarkable performance in generating showers faster than Geant4
across various ranges of incident energy for primary particles, although less precise than Geant4.
While GAN-based models can generate showers faster than other generative models, it is challeng-
ing to train GANs due to the difficulty of converging and ‘mode collapse’. VAE-based models
can generate samples of calorimeter showers faster than Geant4 and GAN. However, they lack in
quality of samples. Nevertheless, VAE-based models are used along with other GAN-based mod-
els [9, 10, 20], Normalizing Flow (NF) [25, 17] and Diffusion [49] models. Among the generative
methods, NF and Diffusion-based models have shown promising performance in generating shower
samples with high fidelity. However, Diffusion-based models are slower in sampling, and NFs re-
quire a constraint bijective mapping making flow models restrictive. Refer to Appendix-A for a
more comprehensive discussion of these models.

This study fills the gap by evaluating three different state-of-the-art calorimeter shower simulation
models using a comprehensive set of metrics. The three models evaluated are CaloDiffusion [5],
EaloScore [51] and EaloINN [25]. We chose CaloDiffusion and CaloScore because of their ability
to generate high-quality samples and CaloINN because of its faster sample generation capability.
Furthermore, these are the three open-sourced implementations that work.

6 Conclusion

"Fast Simulation" using deep-generative models is pivotal in overcoming computational bottlenecks
of the calorimeter shower generation. In this study, we conducted a rigorous evaluation of three
generative models using standard datasets and a diverse set of metrics derived from physics, com-
puter vision, and statistics. Additionally, we explored the impact of using full vs. mixed precision
modes during inference on GPUs. Our evaluation revealed that the CaloDiffusion and CaloScore
generative models demonstrate the most accurate simulation of particle showers, yet there remains
substantial room for improvement. We identified areas where the evaluated models fell short in
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Figure 1: Histogram of two physics observables for dataset 2.
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Figure 5: Comparison of histogram of two physics observables with dataset 3 between full precision
and mixed precision mode using CaloDiffusion.
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Reconstruction of electromagnetic showers in calorimeters using Deep Learning
https://arxiv.org/abs/2311.17914
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Fig. 6 Flow chart of the DeepCluster model. 7 X 7 seed windows are first selected around
all possible seeds (>0.5 GeV) in the event. They are separately passed as input to the seed-
finder NN predicting P,eeqsr for each seed window. Selected seed windows with Pieeqsp >
are combined into groups of 4 with their neighbors and passed to center-finder NN
which predicts the coordinates T ..o, Yrecos the energy E..., and a new seed score PseedCF
for each seed window.
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Fig. 9 Relative energy resolution (left) and energy median (right) obtained with the Deep-
Cluster model and PFClustering algorithm applied on the single- and two-photon test
datasets. The results are shown in the bins of generated energy Egen.
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Fig. 3 Center-finder NN architecture. The seed windows are passed separately as input
to the network. Each input is processed by two convolutional layers until the vector of
summary features is extracted. This vector is passed through one dense layer and further sent
separately to two different branches (coordinate and energy predictions). In each branch, it
passes through two additional dense layers. Detailed information on the number of nodes at
each layer is presented in the figure.
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Design of a SiPM-on-Tile ZDC for the future EIC, and its Performance with Graph Neural Networks

Abstract

https://arxiv.org/abs/2406.12877

We present a design for a high-granularity zero-degree calorimeter (ZDC) for the upcoming Electron-Ion Collider (EIC). The design
uses SiPM-on-tile technology and features a novel staggered-layer arrangement that improves spatial resolution. To fully leverage
the design’s high granularity and non-trivial geometry, we employ graph neural networks (GNNs) for energy and angle regression as
well as signal classification. The GNN-boosted performance metrics meet, and in some cases, significantly surpass the requirements
set in the EIC Yellow Report, laying the groundwork for enhanced measurements that will facilitate a wide physics program. Our
studies show that GNNs can significantly enhance the performance of high-granularity CALICE-style calorimeters by automating
and optimizing the software compensation algorithms required for these systems. This improvement holds true even in the case of
complicated geometries that pose challenges for image-based AI/ML methods.
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Figure 3: Energy resolution (top row) and scale (bottom row) obtained with
the strawman (open symbols) and GNN (filled symbols) for simulated single
neutrons. The resolutions are compared to those of the CALICE beamtest [17]
(orange squares) with (filled) and without (open) software compensation.
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Figure 5: Position resolution for neutrons as a function of the generated energy.
Results are shown with an unstaggered layout (blue) and staggered layout with
the positions reconstructed with the baseline (orange), HEXPLIT (green), and
GNN (red) reconstruction algorithms.
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GenGNN: A Generic FPGAFramework for Graph Neural Network Acceleration
https://arxiv.org/abs/2201.08475

1 Introduction

Graph neural networks (GNNs) have become a powerful
tool for applying deep learning to solve tasks infilling graph
structures. Learning tasks for graphs can be applied at node-
level (e.g., presence of protein [1]), edge-level (e.g., drug-drug
interactions [2]), and graph-level (e.g, molecular property
prediction [3]). Representative applications of GNNs include
analysis of social networks and citation networks, recom-
mendation systems, traffic forecasting, LIDAR point cloud
segmentation for autonomous driving, high energy particle
physics, and molecular representations [4].

Targeting various applications, there is a huge demand
for GNN inference acceleration with diverse requirements.
For instance, point cloud segmentation and detection for
autonomous driving [5] and high energy particle physics [6]
require real-time processing; in a particular example, the col-
lision data from particle collider are collected every 25ns and
thus must be processed using GNNs within nanoseconds
with raw input graphs [7, 8]. For social network applications,
the size of the graphs to be processed is usually extremely
huge and the computation time and memory cost are signif-
icant; therefore, such applications are in demand for GNN
accelerators for large-scale graphs. Consequently, hardware
acceleration is critical to apply GNNs to these applications
and address real-time or large-scale computation.

The challenges and the limitations of existing acceler-
ators, however, are significant. First, GNN computation is
both communication-intensive and computation-intensive,
as also noted by previous literature [9-11], involving mas-
sive irregular memory access for message passing and heavy
computation for embedding transformation. Second, novel
GNN models are rapidly emerging while the accelerator
innovation is lagging behind. For instance, most state-of-the-
art GNN accelerators are tailored for graph convolutional
networks (GCNs) [9, 12, 13], which can be conveniently ex-
pressed as sparse matrix multiplications (SpMM). However,
the majority of GNNs are not suitable for Sp)MM because of
complicated operations such as edge embedding, attention,
mixed neighborhood aggregation, etc. Therefore, generic, ex-
tensible, and flexible acceleration frameworks are required
to rapidly adapt to evolving GNN models. Third, some ac-
celerators adopt graph preprocessing to employ data local-
ity [9, 14-17], while some apply graph partitioning relying
on the property of a fixed input graph (e.g., by analyzing the
adjacency matrix sparsity [13]). Such preprocessing or graph-
specific techniques are not feasible for real-time applications
with millions of input graphs with varied structures.
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Self Supervised Pre-training Method: Contrastive Learning (CL) and Masked Image Model (MIM)
Contrastive Masked Autoencoders are Stronger Vision Learners

https://www.computer.org/csdl/journal/tp/2024/04/10330745/1SrO8maFmFy
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Figure 1: Overview of CMAE. CMAE improves over
its MIM counterpart by leveraging contrastive learning
through novel designs.
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Figure 3: Overall pipeline. Our method contains three components: the online encoder, target encoder and online
decoder. Given a training image, it applies pixel shifting to generate different views, which are then fed into the
online and target encoders respectively. The online encoder randomly masks a fraction of the image patches
and operates on the visible ones. The target encoder operates on the whole view after pixel shifting. The pixel
decoder learns to reconstruct the input image from the image tokens (along with MASK tokens) provided by the
online encoder, while the feature decoder learns to predict the features of the input image for contrastive learning
with the target encoder output features. After the pre-training, only the online encoder is kept for downstream
applications.
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Parameter-Efficient Fine-Turning (PEFT):
Parameter-Efficient Fine-Tuning Methods for Pre-trained Language Models: A Critical Review and Assessment
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