Dispersive analysis of excited
olueball states

Hsiang-nan Li, Academia Sinica
At TQCD Meeting
Sep. 27, 2024

Li, 2408.06738



Glueballs

* Quest for glueballs lasted for decades

* Quenched Lattice QCD (LQCD), sum rules (SR) gave scalar glueball mass
1.5-1.7 GeV (Chen et al. 06, Narison 98)

* Large B(J/w —y f,(1710)) ~10~ supports f0(1710) as a candidate

* Quenched LQCD, SR gave pseudoscalar glueball s ’
mass > 2 GeV (Morningstar, Peardon 99; Narison 98) o € | i,f
* No candidate of large mass before 2023 = B

* Quantum numbers 0-+ of X(2370) determined by BESIII (PRL 132,
181901 (2024)); BR of J/psi radiative decay ~ 10E-4

* X(2370) claimed to be lightest pseudoscalar glueball, but LQCD reliable
for pseudoscalar glueball with axial anomaly?



Our postulation

* It is imperative to investigate this subject in a different approach and
find out whether alternative aspects exist

* We developed dispersive approach, improved version of QCD SR, with
great phenomenological success recently

* Predicted lightest scalar (pseudoscalar) glueball to be admixture of
f0(1370), f0(1500) and f0(1710) (eta(1760))

* f0(500) (admixture of eta and eta’) contains small glue content
e Extended to excited rho mesons, establish rho(1450), rho(1700)

e Postulate f 0(2200) (X(2370)) as first excited state of scalar
(pseudiscalar) glueball



Formalism



Contour integration

e Two-current correlator
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Quark side

e Correlator at large ¢> (deep Euclidean region)

e Operator product expansion (OPE) reliable parameter characterizing
factorization breakdown
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Hadron side

Dispersive integral
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Dispersion relation

* Rewrite pert piece as contour integral

Ipert(s) 1 (asG?)  _(mgqq) 2247 ko (Gq)?

1 |
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due to analyticity of perturbation theory

* Equality of two sides gives dispersion relation

e Contributions from big circles cancel, and unknown spectral
function from branch cuts remains

arbitrary radius
» \
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UV subtraction

. arbitrary R turned
* Subtracted spectral function into arbitrary scale

/
Ap(s,A) = p(s) — %Imﬂpe“(s)[l —exp(—s/A)]

* Maintain low-energy Kwon et al 2008
behavior p(s) ~ s at s — (

e Bear resonance structure the same as p(s)
* Circle radius R can be pushed to infinity [y 8/
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* No duality assumed at any finite s Fredholm equation of the 1° kind



Weakness of sum rules

* Presume existence of ground state, parametrized as pole
* How to handle excited-state contribution?
e Rely on parametrization, quark-hadron duality

i 5 ‘ b |
Imll(¢?) = 7f&0(q* — mi) + ImITP™* (¢*)6 (¢ — so)
I
observables: decay constant, mass continuum threshold
* Duality may fail equivalent to q, introduced by Borel transform

e Stability in unphysical Borel mass?

e Usually not; rely on discretionary prescription; tune sO to
make 70% (30%) perturbative (nonperturbative) contribution



Sum rules as inverse problem

* Once dispersion relation is solved directly,
* Existence of a resonance not presumed

* No need to parametrize spectral function
* Free continuum threshold absent

* Quark-hadron duality not implemented

* Borel transformation not required

* Discretionary prescription not necessary
* Rely only on analyticity

* Precision of predictions enhanced systematically by adding higher-
order and higher-power corrections to OPE inputs.



Ground-state solutions

. ,
. . . . . . p(Y)
Set aside technical detail of solving the integral equation / dy
0

T —y

= w(x)



rho meson spectral function

* OPE input known in the literature

(mqqq) = 0.007 x (—0.246)" GeV*, (a.G*) = 0.08 GeV*
s (Gq)? = 1.49 x 107* GeV®, a, =0.5, k= 2.5.
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rho meson peak emerges |



rhO Meson Mass scaling (unphysical) region
peak locations drift with /A

* Vary A, find peak location ) (GeV)
* Physical solution insensitive to A ! '
* Tiny error, stable solution “-3;' ------- o
m, = (0.77 £ 0.02) GeV s stable
. : - . physical
Including condensate variation I solution A(GeV2)
m, = (0.77 £0.04) GeV S

* Variable changes = =¢%/A y=s/A
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* Scaling behavior due to disappearance of power corrections at high A



Scalar glueball mass

subtracted spectral function, cannot resolve fine structure
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Pseudoscalar glueball mass
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Tﬁp = (1.754 0.02) GeV — n(1760)
« 1(1760) proposed by Page, XQ Li in 1998
* Quenched LQCD gave 2.6 GeV in 1999

* X(1835) BR ~ 10E-4, but seenin .J/¢ — ~~¢ unlikely

BESIII, 2018

width ~ 240 MeV
J/1p — ~v(n(1760) —)ww BR~10E-3



Excited-state solutions



ldea

* To access excited state, ground-state contribution must be deducted
from correlator, i.e., from spectral function to suppress interference

* Parametrize rho(770) contribution as delta-function Fyd(s —m>)

Fy = / dsApo(s,\) = 0.22 GeV?
0

* Subtract it from two sides of dispersion relation

unknown
/OC dyAp(y) _ /C’O dyce_y — fodly—ro) 1 (a,G*) 2<mq(jq) 2247 ras(qq)”
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Excited rho resonances e

* To get 2"9 excited state, further subtract

Fio(s —m2,) I 2/ dsApi(s) =0.11 GeVZ  °
t1

A (GeV?)

021 5 m, = 1.47 GeV— p(1450) o : ; : : ;

- valley due to subtraction of ground state

-0.3"

* Adopting BW form, instead of delta-function, m, increases by 5%

10 12

/\ uncertainties involved in lower states
S, == propagated to higher states, enlarged

il K \ s (GeV?) through sequential subtractions



Excited scalar glueball

» After checking the formalism, apply it to glueballs

* For scalar glueballs 2187 4+ 14 MeV

ground-state solutiV -
os| ap | - m(GeV)

—_ 24¢
,I’ ‘s\\ A
/ N I
- I > 221 A A A a
S ‘\‘ | / | N -~ i A
A 2 /4 6 8 201
\\ I 5 I
| I
\ i
\ ! s (GeV") 1.8}
\ I
\ / I
—0.5/ \ / 16}
\ !
‘\ / I
14+
\ ) I 2
\\ /’ I A (GeV )
g 1.2% ' ' : : ‘
-10" \ 0.5 1.0 15 2.0 25 3.0

valley due to subtraction of ground state



Excited pseudoscalar glueball

BESIII measurement
2395 & 11(stat) 35 (syst) MeV

mp = 2.41 £ 0.04 GeV — X (2370)

* For pseudoscalar glueballs

o ground-state solution 28]
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Conclusion

* Our dispersive approach, compared to conventional SR, is free of
arbitrary parameters, and can give definite predictions with
controllable uncertainties

e Simultaneous accommodation of rho and scalar glueball spectra
strongly supports our analyses

* Both f0(2200) and X(2370) are heavier than their ground states by
about 700 MeV, typical energy gap induced by radial excitations

* O(10E-4) BRs of radiative decays .J /¢ — ~ f4(2200) and v.X (2370),
lower than those of O(10E-3) associated with ground states, also
make sense

e Uncertainties larger for higher states; need to be improved



Back-up slides



Fredholm integral equation

* Goal is to solve ill-posed integral equation

unknown spectral density
to be solved
v

= pr
/ dy PLY) = w(a)+— OPEinput
0

r—y

15t kind of Fredholm integral equation

* How to solve it? Notoriously difficult
e Discretization does not work



iIll-posedness

* Discretizing integral equation fails

N4..n. — 4. 1/(1_])9 17&]
L
unknowns input

 Rows Mij and M(i+1)j become almost identical for fine
meshes, det(M) ~ 0

* Matrix M becomes singular; )/—! diverges quickly
 Solution diverges and sensitive to variation of inputs



Strategy

* Suppose p(y) decreases quickly enough

* Expansion into powers of 1/x justified
j‘\l."

1 _ Z '._Um_l wir) = Z b_ﬂ
r—y = am - =¥ truefor OPE
* Suppose w(x) can be expanded ceneralized
. N
Jecompose ply) = Z fl-n.'._lf&ﬁ_ylf_}la :?)?;jr?c;rrsials
* Orthogonality " dependon p(y) at y — 0
'n+a+1) .

é mn

/U e~ VL (y) LI (y)dy =

n!




Solution
* Equating coefficients of 1 /2™

Ma=1b Mn = / dyy™ e VLY ()
oy 0
matrix T
T input ) = (blzbgs'” :bf\fr)
unknown a = (aq,aq, - ,ay)

e Solution @ = M ~1b

* True solution can be approached by increasing N, but 1/ —1
diverges with N

* Additional polynomial gives 1/2V+! correction due to
orthogonality, beyond considered precision



Test examples

2 —yg
e Generate mock data from ﬂ(y) — Uy €

bn:/ dyy™LyPe 4—[ ay LY _ )
0

r—1

* Compute matrix M with a = 2

 Solution stable for N > 20, becomes oscillatory as N=24 due
to divergent /1

N

22

~ 1 a93/ass ~ 2 azq/as3 = 58



Boundary conditions

* Test choices of ¢ (red: true solution)

=

- Py) a=0 a=2 \ a=4

Y {122/&91 =1.2

\

N=22

deviation almost perfect completely different

* Parameter @@ determined by boundary conditions of solution
* Boundary conditions help getting correct solutions



Resolution

* ¢~ ¥ implies resolution power Ay ~ 1
* Test double peak functions

e—QD(y—D.B)Q n 8—20(@;—1.0)9 Ay ~ 0.5

e—20(y—0.5)> | —20(y—2.0)7 Ay ~ 1.5

red: true solution

* Fine structure cannot be resolved (ill-posed)
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