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Glueballs
• Quest for glueballs lasted for decades
• Quenched Lattice QCD (LQCD), sum rules (SR) gave scalar glueball mass 

1.5-1.7 GeV (Chen et al. 06, Narison 98)

• Large                                                    supports f0(1710) as a candidate
• Quenched LQCD, SR gave pseudoscalar glueball                                           

mass > 2 GeV (Morningstar, Peardon 99; Narison 98)

• No candidate of large mass before 2023

• Quantum numbers 0-+ of X(2370) determined by BESIII (PRL 132, 
181901 (2024)); BR of J/psi radiative decay ~ 10E-4

• X(2370) claimed to be lightest pseudoscalar glueball, but LQCD reliable 
for pseudoscalar glueball with axial anomaly?
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Our postulation 
• It is imperative to investigate this subject in a different approach and 

find out whether alternative aspects exist
• We developed dispersive approach, improved version of QCD SR, with 

great phenomenological success recently 
• Predicted lightest scalar (pseudoscalar) glueball to be admixture of 

f0(1370), f0(1500) and f0(1710) (eta(1760)) 
• f0(500) (admixture of eta and eta’) contains small glue content
• Extended to excited rho mesons, establish rho(1450), rho(1700)
• Postulate f_0(2200) (X(2370)) as first excited state of scalar 

(pseudiscalar) glueball



Formalism



Contour integration
• Two-current correlator

• Identity from contour integration

vacuum polarization 
function

s

branching cut



Quark side
• Correlator at large        (deep Euclidean region)
• Operator product expansion (OPE) reliable

higher order higher powers

perturbative piece 4-quark condensate
factorized into
product of 2-quark
condensates

nontrivial vacuum

OPE

parameter characterizing
factorization breakdown



Hadron side
Dispersive integral 

contribution
from large 
circle C of 
radius R will 
be cancelled

branch cut caused by 
real intermediate
states due to time-like

(log term)

s

nonperturbative
spectral function perturbative result



Dispersion relation
• Rewrite pert piece as contour integral

• Equality of two sides gives dispersion relation
• Contributions from big circles cancel, and unknown spectral 

function from branch cuts remains

due to analyticity of  perturbation theory 

arbitrary radius



UV subtraction
• Subtracted spectral function

• Maintain low-energy                                                                      
behavior                    at 

• Bear resonance structure the same as
• Circle radius R can be pushed to infinity

• No duality assumed at any finite s

Kwon et al 2008

arbitrary R turned 
into arbitrary scale

Fredholm equation of the 1st kind



Weakness of sum rules
• Presume existence of ground state, parametrized as pole
• How to handle excited-state contribution?
• Rely on parametrization, quark-hadron duality

• Duality may fail
• Stability in unphysical Borel mass?
• Usually not; rely on discretionary prescription; tune s0 to 

make 70% (30%) perturbative (nonperturbative) contribution   

continuum thresholdobservables: decay constant, mass

equivalent to q, introduced by Borel transform



Sum rules as inverse problem
• Once dispersion relation is solved directly,
• Existence of a resonance not presumed 
• No need to parametrize spectral function 
• Free continuum threshold absent
• Quark-hadron duality not implemented
• Borel transformation not required 
• Discretionary  prescription not necessary
• Rely only on analyticity
• Precision of predictions enhanced systematically by adding higher-

order and higher-power corrections to OPE inputs.



Ground-state solutions
Set aside technical detail of solving the integral equation



rho meson spectral function
• OPE input known in the literature

rho meson peak emerges !

solution of 
spectral function

excited states

local duality violation



rho meson mass
• Vary     , find peak location
• Physical solution insensitive to 
• Tiny error, stable solution

• Including condensate variation

• Variable changes 

• Scaling behavior due to disappearance of power corrections at high

stable
physical
solution

scaling (unphysical) region
peak locations drift with 



Scalar glueball mass

BES data

width~
300 MeV

width~112 MeV

Breit-Wigner mass 400-800 MeV

subtracted spectral function, cannot resolve fine structure 



Pseudoscalar glueball mass

• proposed by Page, XQ Li in 1998
• Quenched LQCD gave 2.6 GeV in 1999
• BR ~ 10E-4, but seen in                      ,  unlikely

,
width ~ 240 MeV

~270 MeV

BESIII, 2018

BR~10E-3



Excited-state solutions



Idea 
• To access excited state, ground-state contribution must be deducted 

from correlator, i.e., from spectral function to suppress interference
• Parametrize rho(770) contribution as delta-function

• Subtract it from two sides of dispersion relation
unknown



Excited rho resonances
• To get 2nd excited state, further subtract 

• Adopting BW form, instead of delta-function,         increases by 5% 

valley due to subtraction of ground state

uncertainties involved in lower states 
propagated to higher states, enlarged 
through sequential subtractions



Excited scalar glueball
• After checking the formalism, apply it to glueballs
• For scalar glueballs

ground-state solution

valley due to subtraction of ground state



Excited pseudoscalar glueball
• For pseudoscalar glueballs

ground-state solution

valley due to subtraction of ground state

BESIII measurement



Conclusion 
• Our dispersive approach, compared to conventional SR, is free of 

arbitrary parameters, and can give definite predictions with 
controllable uncertainties

• Simultaneous accommodation of rho and scalar glueball spectra 
strongly supports our analyses 

• Both f0(2200) and X(2370) are heavier than their ground states by 
about 700 MeV, typical energy gap induced by radial excitations 

• O(10E-4) BRs of radiative decays                                                                , 
lower than those of O(10E-3) associated with ground states, also 
make sense 

• Uncertainties larger for higher states; need to be improved



Back-up slides



Fredholm integral equation
• Goal is to solve ill-posed integral equation

• How to solve it? Notoriously difficult
• Discretization does not work

unknown spectral density  
to be solved

1st kind of Fredholm integral equation

OPE input



ill-posedness
• Discretizing integral equation fails

• Rows Mij and M(i+1)j become almost identical for fine 
meshes, det(M) ~ 0 

• Matrix M becomes singular;             diverges quickly
• Solution diverges and sensitive to variation of inputs

inputunknowns
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Strategy 
• Suppose           decreases quickly enough
• Expansion into powers of 1/x justified

• Suppose            can be expanded
• Decompose

• Orthogonality  

generalized
Laguerre
polynomials

depend on            at 

true for OPE



Solution 
• Equating coefficients of

• Solution
• True solution can be approached by increasing N, but           

diverges with N
• Additional polynomial gives                correction due to 

orthogonality, beyond considered precision

matrix

unknown
input



Test examples
• Generate mock data from

• Compute matrix M with
• Solution stable for N > 20, becomes oscillatory as N=24 due 

to divergent  



Boundary conditions
• Test choices of       (red: true solution)

• Parameter       determined by boundary conditions of solution 
• Boundary conditions help getting correct solutions

deviation

N=22

almost perfect completely different

=1.2



Resolution 
• implies resolution power
• Test double peak functions

• Fine structure cannot be resolved (ill-posed)

red: true solution 
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