Tensor Network States 000		Results 00000	Summary 00

Parton Distribution Functions from Tensor Network calculations

Manuel Schneider

manuel.schneider@nycu.edu.tw

National Yang Ming Chiao Tung University

[arXiv:2409.16996]

TQCD 2nd meeting Beimen campus of NYCU, Taipei 27 September 2024

Tensor Network States 000		Results 00000	Summary 00

Collaborators

Mari Carmen Bañuls

Krzysztof Cichy

[Bañuls et al. 2024]

C.-J. David Lin

Parton Distribution Functions ●O	Tensor Network States 000		Results 00000	Summary 00
Outline				

Motivation: Parton Distribution Functions

Method: Tensor Network States

3 Model: The Schwinger Model

Algorithm: PDF with Tensor Networks

Parton Distribution Functions O●	Tensor Network States 000		Results 00000	Summary 00

- PDF: probability of finding a constituent in a hadron with momentum fraction ξ
- example: Deep Inelastic Scattering (DIS)

Parton Distribution Functions ⊙●	Tensor Network States 000		Results 00000	Summary 00

- PDF: probability of finding a constituent in a hadron with momentum fraction ξ
- example: Deep Inelastic Scattering (DIS)
- ▶ large momentum exchange $Q^2 = -q^2$
- kinematic variables: Q^2 , Bjorken $\xi = \frac{Q^2}{2P \cdot q}$
- ▶ → scattering amplitude factorizes: perturbative part × PDF

[Schwartz 2014]

Parton Distribution Functions ⊙●	Tensor Network States 000		Results 00000	Summary 00

- PDF: probability of finding a constituent in a hadron with momentum fraction ξ
- example: Deep Inelastic Scattering (DIS)
- ▶ large momentum exchange $Q^2 = -q^2$
- ▶ kinematic variables: Q^2 , Bjorken $\xi = \frac{Q^2}{2P \cdot q}$
- ▶ → scattering amplitude factorizes: perturbative part × PDF
- ▶ PDF depends only on Bjorken $\xi = \frac{Q^2}{2P \cdot q}$

$$\Rightarrow \left| f(\xi) = \int dz^+ e^{-i\xi P^- z^+} \left\langle P \left| \bar{\psi}(z^+) \gamma^- W(z^+ \leftarrow 0) \psi(0) \right| P \right\rangle \right|$$

Integration along lightcone direction z⁺

Parton Distribution Functions ⊙●	Tensor Network States 000		Results 00000	Summary 00

- PDF: probability of finding a constituent in a hadron with momentum fraction ξ
- example: Deep Inelastic Scattering (DIS)
- ▶ large momentum exchange $Q^2 = -q^2$
- kinematic variables: Q^2 , Bjorken $\xi = \frac{Q^2}{2P \cdot q}$
- ▶ → scattering amplitude factorizes: perturbative part × PDF
- ▶ PDF depends only on Bjorken $\xi = \frac{Q^2}{2P \cdot q}$

$$\Rightarrow \left| f(\xi) = \int dz^+ e^{-i\xi P^- z^+} \left\langle P \left| \bar{\psi}(z^+) \gamma^- W(z^+ \leftarrow 0) \psi(0) \right| P \right\rangle \right|$$

- Integration along lightcone direction z⁺
- Lattice QCD in euclidean space: lightcone ~ point
- Hamiltonian formalism: lightcone in Minkowski space
- ▶ → Use Tensor Network States/Quantum computing

	Tensor Network States ●○○		Results 00000	Summary 00
Outline				

3 Model: The Schwinger Model

Algorithm: PDF with Tensor Networks

	Tensor Network States ○●○		Results 00000	Summary 00
Tensor Networks				

$$|\psi\rangle = \sum_{s_1, s_2, \dots, s_N} \Psi^{s_1 s_2 \dots s_N} |s_1\rangle \otimes |s_2\rangle \otimes \dots \otimes |s_N\rangle$$

generic state scales exponentially

	Tensor Network States ○●○		Results 00000	Summary 00
Tensor Networks				

1/1

 $\overline{}$

$$|\psi\rangle = \sum_{s_1, s_2, \dots, s_N} \Psi^{s_1 s_2 \dots s_N} |s_1\rangle \otimes |s_2\rangle \otimes \dots \otimes |s_N\rangle$$

- generic state scales exponentially
- Tensor Network State as ansatz
- Id: Matrix Product State (MPS)

	Tensor Network States O●O		Results 00000	Summary 00
Tonsor Notworks				

Tensor Networks

- generic state scales exponentially
- Tensor Network State as ansatz
- Id: Matrix Product State (MPS)
- truncation to bond dimension D
- polynomial resource scaling

 $|\psi\rangle = \sum \Psi^{s_1 s_2 \dots s_N} |s_1\rangle \otimes |s_2\rangle \otimes \dots \otimes |s_N\rangle$

 $s_1, s_2, ..., s_N$

	Tensor Network States ○●○		Results 00000	Summary 00
Tanaar Naturaka				

 $|\psi\rangle =$

Tensor Networks

- generic state scales exponentially
- Tensor Network State as ansatz
- Id: Matrix Product State (MPS)
- truncation to bond dimension D
- polynomial resource scaling
- good approximation for ground states and low excited states
- area laws of entanglement entropy [Hastings 2007]

$$\Psi^{s_1,s_2,\ldots,s_N} \approx \sum_{\{i_x\}=1}^{D} A_{i_1}^{1,s_1} \cdot A_{i_1,i_2}^{2,s_2} \cdot A_{i_2,i_3}^{3,s_3} \ldots A_{i_{N-1}}^{N,s_N}$$

 $\Psi^{s_1 s_2 \dots s_N} | s_1 \rangle \otimes | s_2 \rangle \otimes \dots \otimes | s_N \rangle$

Tensor Network States ○○●		Results 00000	Summary 00

Efficient Tensor Network operations

Find groundstate and excited states

Apply operators / time evolution

Calculate overlap

	Tensor Network States 000	Schwinger Model ●O	Results 00000	Summary 00
Outline				

Model: The Schwinger Model

Algorithm: PDF with Tensor Networks

Tensor Network States 000	Schwinger Model O●	Results 00000	Summary 00

The Schwinger Model [Hamer et al. 1997]

- Quantum electrodynamics in 1+1 dimensions, U(1) symmetry
- Fermion ("parton") couples to gauge boson ("gluon")
- Bound states (hadron) [Bañuls et al. 2013]
- ▶ \Rightarrow can calculate equivalent to PDF [Dai et al. 1995]
- Lagrange density:

$$\mathcal{L} = \bar{\Psi}(i\partial \!\!\!/ - gA - m)\Psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

▶ For TN/QC: transform action into spin-model Hamiltonian

$$H = x \sum_{n=0}^{N-2} \left[\sigma_n^+ \sigma_{n+1}^- + \sigma_n^- \sigma_{n+1}^+ \right] + \frac{\mu}{2} \sum_{n=0}^{N-1} \left[1 + (-1)^n \sigma_n^z \right] + \sum_{n=0}^{N-2} \left[\frac{1}{2} \sum_{k=0}^n \left((-1)^k + \sigma_k^z \right) \right]^2 + \left[\frac{1}{a^2 g^2} + \frac{1}{a^2 g^2}$$

	Tensor Network States 000	PDF of the Schwinger Model ●O	Results 00000	Summary 00
Outline				

- 2 Method: Tensor Network States
- 3 Model: The Schwinger Model

Algorithm: PDF with Tensor Networks

Tensor Network States 000	PDF of the Schwinger Model O●	Results 00000	Summary 00

Lightcone correlators in the Schwinger Model

$$\begin{split} &\left\langle P \left| \bar{\Psi}(z^{+}) \gamma^{-} W(z^{+} \leftarrow 0) \Psi(0) \right| P \right\rangle \\ &\rightarrow \mathcal{M}_{(\mathsf{e},\mathsf{e})} + \mathcal{M}_{(\mathsf{o},\mathsf{o})} - \mathcal{M}_{(\mathsf{o},\mathsf{e})} - \mathcal{M}_{(\mathsf{e},\mathsf{o})} \\ &\rightarrow \left\langle P \right| \sigma^{+}(z^{+}) W_{z^{+} \leftarrow 0} \sigma^{-}(0) \left| P \right\rangle + \dots \end{split}$$

Tensor Network States 000	PDF of the Schwinger Model ○●	Results 00000	Summary 00

Lightcone correlators in the Schwinger Model

$$\begin{aligned} \left\langle P \left| \bar{\Psi}(z^{+}) \gamma^{-} W(z^{+} \leftarrow 0) \Psi(0) \right| P \right\rangle \\ \rightarrow \mathcal{M}_{(\mathsf{e},\mathsf{e})} + \mathcal{M}_{(\mathsf{o},\mathsf{o})} - \mathcal{M}_{(\mathsf{o},\mathsf{e})} - \mathcal{M}_{(\mathsf{e},\mathsf{o})} \\ \rightarrow \left\langle P \right| \sigma^{+}(z^{+}) W_{z^{+} \leftarrow 0} \sigma^{-}(0) \left| P \right\rangle + \dots \end{aligned}$$

- Evolution along light cone \rightarrow small time- and space-like steps
- Time evolution: $e^{-i\tau H} \approx \left(e^{-i\delta\tau H_{eo}} e^{-i\delta\tau H_{oe}} e^{-i\delta\tau H_L} \right)^{\frac{\tau}{\delta\tau}}$
- Spatial evolution: Insert static charge and move stepwise

d' < 2m

	Tensor Network States 000		Results ●0000	Summary 00
Outline				

Motivation: Parton Distribution Functions

2 Method: Tensor Network States

3 Model: The Schwinger Model

Algorithm: PDF with Tensor Networks

6 Results

Tensor Network States 000		Results 0●000	Summary 00

Results - Matrix elements

m/g = 5.6419; x = 100; D = 80; $\Delta t/\Delta \tau = 100$; $\mu = 112.588$; excit= 1; $N/\sqrt{x} = 10$

m/g = 5.6419; x = 100; D = 80; $\Delta t/\Delta \tau = 100$; $\mu = 112.588$; excit= 1; $N/\sqrt{x} = 10$

Tensor Network States 000		Results 00●00	Summary 00

Results - Fourier transform of matrix elements

Tensor Network States 000		Results 00●00	Summary 00

Results - Fourier transform of matrix elements

Tensor Network States 000		Results 000●0	Summary 00

Results - Subtracted matrix elements [Collins 2011]

Tensor Network States 000		Results 00000	Summary 00

Results - PDF

 $m/g = 5.6419; D = 80; \Delta t / \Delta \tau = 100$

Observations:

- $\xi > 0$: $f_{\psi} \approx$ symmetric around $\xi = 0.5$
- Antiparticle PDF from negative ξ:

$$f_{\overline{\psi}}(\xi) = -f_{\psi}(-\xi)$$

► Observed symmetry $\rightarrow f_{\overline{\psi}}(\xi) = f_{\psi}(\xi)$ \Rightarrow meson \checkmark

Tensor Network States 000		Results 0000●	Summary 00

Results - PDF

 $N = 100; x = 100; D = 80; \Delta t / \Delta \tau = 100; N / \sqrt{x} = 10$

Observations:

- $\xi > 0$: $f_{\psi} \approx$ symmetric around $\xi = 0.5$
- Antiparticle PDF from negative ξ:

$$f_{\overline{\psi}}(\xi) = -f_{\psi}(-\xi)$$

- ► Observed symmetry $\rightarrow f_{\overline{\psi}}(\xi) = f_{\psi}(\xi)$ \Rightarrow meson \checkmark
- Peak broadens with decreasing fermion mass

	Tensor Network States 000		Results 00000	Summary ●O
Outline				

- 2 Method: Tensor Network States
- 3 Model: The Schwinger Model
- Algorithm: PDF with Tensor Networks

6 Results

6 Summary and Outlook

	Tensor Network States 000		Results 00000	Summary O●
Summary				

Summary:

- PDFs characterize the structure of hadrons
- ▶ Euclidean space: lightcone → point
- Tensor Network States: direct evaluation of lightcone correlators
- Schwinger model: PDF with standard TN tools: MPS, time evolution
- \blacktriangleright Obtained fermion- and anti-fermion-PDF for the vector meson \checkmark

Outlook:

- Control errors, continuum and infinite volume limits
- Extend mass range
- ▶ Same analysis for QCD in 3+1 dimensions ☺

- ¹M. C. Bañuls, K. Cichy, C. J. D. Lin, and M. Schneider, "Parton distribution functions in the schwinger model with tensor networks," arXiv eprint, 2409.16996 (2024) doi:10.48550/arXiv.2409.16996.
- ²M. D. Schwartz, *Quantum Field Theory and the Standard Model*, (Cambridge University Press, Mar. 2014), doi:10.1017/9781139540940.
- ³M. B. Hastings, "An area law for one-dimensional quantum systems," Journal of Statistical Mechanics: Theory & Exp. **2007**, 08024 (2007) doi:10.1088/1742-5468/2007/08/P08024.
- ⁴M. C. Bañuls, K. Cichy, J. I. Cirac, and K. Jansen, "The mass spectrum of the schwinger model with matrix product states," JHEP **2013**, 158 (2013) doi:10.1007/JHEP11(2013)158.
- ⁵J. Dai, J. Hughes, and J. Liu, "Perturbative analysis of the massless schwinger model," Phys. Rev. D **51**, 5209–5215 (1995) doi:10.1103/PhysRevD.51.5209.
- ⁶C. J. Hamer, Z. Weihong, and J. Oitmaa, "Series expansions for the massive schwinger model in hamiltonian lattice theory," Phys. Rev. D **56**, 55–67 (1997) doi:10.1103/PhysRevD.56.55.
- ⁷CMS collaboration, "Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc," Physics Letters B **716**, 30–61 (2012) doi:10.1016/j.physletb.2012.08.021.
- ⁸J. Collins, *Foundations of perturbative qcd*, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge Univ. Press, 2011), doi:10.1017/CB09780511975592.

Outline

Singular values and cutoff

Checks - lightcone

Time evolution of correlator with fixed static charge

Checks - lightcone

Time evolution of correlator with charge moved along the lightcone

Spin formulation of the Schwinger Model

$$\mathcal{L} = \bar{\Psi}(i\partial \!\!\!/ - gA - m)\Psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

Legendre transformation $\rightarrow \mathcal{H}$ (temporal gauge $A^0 = 0$)

$$\mathcal{H} = -i\bar{\Psi}\gamma^{1}(\partial_{1} - igA_{1})\Psi + m\bar{\Psi}\Psi + \frac{1}{2}E^{2}$$

$$E = F^{1,0}$$

Spin formulation of the Schwinger Model

$$\mathcal{L} = \bar{\Psi}(i\partial \!\!\!/ - gA - m)\Psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

Legendre transformation $\rightarrow \mathcal{H}$ (temporal gauge $A^0 = 0$)

$$\begin{aligned} \mathcal{H} &= -i\bar{\Psi}\gamma^1(\partial_1 - igA_1)\Psi + m\bar{\Psi}\Psi + \frac{1}{2}E^2\\ E &= F^{1,0} \end{aligned}$$

Lattice formulation: staggered fermions

:A.

_;A-

Spin formulation of the Schwinger Model (2)

Spin formulation of the Schwinger Model (2)

$$H = -\frac{i}{2a} \sum_{n} \left(\phi_n^{\dagger} e^{i\theta_n} \phi_{n+1} - \phi_{n+1}^{\dagger} e^{-i\theta_n} \phi_n \right) + m \sum_{n} (-1)^n \phi_n^{\dagger} \phi_n + \frac{ag^2}{2} \sum_{n} L_n^2$$

Decoupling:

$$\phi_n \to \prod_{k < n} \left(e^{-i\theta_k} \right) \phi_n.$$

 \frown

Spin formulation of the Schwinger Model (2)

$$H = -\frac{i}{2a} \sum_{n} \left(\phi_n^{\dagger} e^{i\theta_n} \phi_{n+1} - \phi_{n+1}^{\dagger} e^{-i\theta_n} \phi_n \right) + m \sum_{n} (-1)^n \phi_n^{\dagger} \phi_n + \frac{ag^2}{2} \sum_{n} L_n^2$$

 \frown

Decoupling:

$$\phi_n \to \prod_{k < n} \left(e^{-i\theta_k} \right) \phi_n.$$

 \frown

 \frown

 \frown

 \frown

Jordan-Wigner transformation \rightarrow spin model: $\hat{\phi}_n = \prod_{k < n} (i\sigma_k^z) \sigma_n^-$:

$$H = \frac{1}{2a} \sum_{n} \left(\sigma_{n}^{+} \sigma_{n+1}^{-} + \sigma_{n+1}^{-} \sigma_{n}^{+} \right) + \frac{m}{2} \sum_{n} \left[1 + (-1)^{n} \sigma_{n}^{z} \right] + \frac{ag^{2}}{2} \sum_{n} L_{n}^{2}.$$

 \frown

Spin formulation of the Schwinger Model (2)

$$H = -\frac{i}{2a} \sum_{n} \left(\phi_n^{\dagger} \phi_n^{\dagger} \phi_{n+1} - \phi_{n+1}^{\dagger} \phi_n^{\dagger} \right) + m \sum_{n} (-1)^n \phi_n^{\dagger} \phi_n + \frac{ag^2}{2} \sum_{n} L_n^2$$

 \frown

Decoupling:

$$\phi_n \to \prod_{k < n} \left(e^{-i\theta_k} \right) \phi_n.$$

 \frown

 \frown

 \frown

 \frown

Jordan-Wigner transformation \rightarrow spin model: $\hat{\phi}_n = \prod_{k < n} (i\sigma_k^z) \sigma_n^-$:

$$H = \frac{1}{2a} \sum_{n} \left(\sigma_{n}^{+} \sigma_{n+1}^{-} + \sigma_{n+1}^{-} \sigma_{n}^{+} \right) + \frac{m}{2} \sum_{n} \left[1 + (-1)^{n} \sigma_{n}^{z} \right] + \frac{ag^{2}}{2} \sum_{n} L_{n}^{2}.$$

Gauss's law:

$$L_n - L_{n-1} = \sigma_n^+ \sigma_n^- - \frac{1}{2} \left[1 - (-1)^n \right] = \frac{1}{2} \left[(-1)^n + \sigma_n^z \right]$$

Spin formulation of the Schwinger Model (2)

$$H = -\frac{i}{2a} \sum_{n} \left(\phi_n^{\dagger} \phi_{n+1}^{\dagger} - \phi_{n+1}^{\dagger} \phi_{n} \right) + m \sum_{n} (-1)^n \phi_n^{\dagger} \phi_n + \frac{ag^2}{2} \sum_{n} L_n^2$$

Decoupling:

$$\phi_n \to \prod_{k < n} \left(e^{-i\theta_k} \right) \phi_n.$$

Jordan-Wigner transformation \rightarrow spin model: $\hat{\phi}_n = \prod_{k < n} (i\sigma_k^z) \sigma_n^-$:

$$H = \frac{1}{2a} \sum_{n} \left(\sigma_{n}^{+} \sigma_{n+1}^{-} + \sigma_{n+1}^{-} \sigma_{n}^{+} \right) + \frac{m}{2} \sum_{n} \left[1 + (-1)^{n} \sigma_{n}^{z} \right] + \frac{ag^{2}}{2} \sum_{n} L_{n}^{2}.$$

Gauss's law:

$$L_n - L_{n-1} = \sigma_n^+ \sigma_n^- - \frac{1}{2} \left[1 - (-1)^n \right] = \frac{1}{2} \left[(-1)^n + \sigma_n^z \right]$$

 \rightarrow Eliminate gauge degrees of freedom from *H*, rescaling:

$$H = x \sum_{n=0}^{N-2} \left[\sigma_n^+ \sigma_{n+1}^- + \sigma_n^- \sigma_{n+1}^+ \right] + \frac{\mu}{2} \sum_{n=0}^{N-1} \left[1 + (-1)^n \sigma_n^z \right] + \sum_{n=0}^{N-2} \left[\frac{1}{2} \sum_{k=0}^n \left((-1)^k + \sigma_k^z \right) \right]^2 \left[\left(x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right) \right]^2 \right] \left(x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right) \left[\left(x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right) \right]^2 \right] \left(x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right) \left[\left(x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right) \right]^2 \right] \left(x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right) \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[\left(x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right) \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{a^2 g^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{ag^2} \right]^2 \left[x = \frac{1}{ag^2}, \mu = \frac{2m}{ag^2} \right]^2 \left[x = \frac{1}{ag^2} \right]^2 \left[x = \frac{1}{a$$

Factorization

Cross section:

$$\sigma \propto L^{\mu\nu}\left(k,q\right) W_{\mu\nu}\left(q,P\right)$$

Hadronic Tensor:

$$W_{\mu\nu}\left(\xi,P\right) = \sum_{i} \int_{x}^{1} \frac{dz}{z} f_{i}\left(z\right) \hat{W}_{\mu\nu}\left(\frac{\xi}{z},Q\right)$$

Leading order with $\hat{W} \propto \delta \left(1 - \frac{\xi}{z}\right)$:

$$W_{\mu\nu}(q,P) = 4\pi \left(-g_{\mu\nu} + \frac{q_{\mu}q_{\nu}}{q^2} \right) F_1 + \frac{8\pi x}{Q^2} \left(P_{\mu} - \frac{P \cdot q}{q^2} q_{\mu} \right) \left(P^{\nu} - \frac{P \cdot q}{q^2} q^{\nu} \right) F_2$$

Factorization (leading order):

$$F_{1}(\xi) = \frac{1}{2} \sum_{i} e_{i}^{2} f_{i}(\xi)$$
$$F_{2}(\xi) = 2xF_{1}(\xi)$$