Cool dense QCD and inhomogeneous phases a.k.a. chiral spirals

R. Pisarski, F. Rennecke, V. Skokov, A. Tsvelik, <u>S. Valgushev*</u> and Marc Winstel

> TQCD 2024 NYCU 27 September 2024

> > Based on Phys. Rev. D 102, 016015 (2020) and arXiv:2403.18640

QCD at finite density

Signs of CEP?

Lattice: small mu, Taylor expansion & estimate radius of convergence, Cluster expansion

No signs of CEP from lattice so far

Hot QCD Arxiv: 1701.04325 Vovchenko, Steinheimer, Philipsen, Stoecker Arxiv:1711.01261

Alternative scenario?

R. Pisarski, V. Skokov, A. Tsvelik, Arxiv:1801.08156

Quarkyonic matter

Effective reduction to 1+1-dim SU(2 Nf) QCD in large Nc limit

Kojo, Hidaka, McLerran, Pisarski Arxiv:0912.3800

Evidence from lattice in two-color QCD (no sign problem!):

Bornyakov et al, 1711.01869

Chiral symmetry breaking

Suggestive argument in 1+1 dim: μ can be eliminated in the expense of Chiral Spiral:

 $\bar{q}q \rightarrow \cos(2\mu z)\bar{q}q + i\sin(2\mu z)\bar{q}\gamma_5 q$

Chiral symmetry breaking

Exact solutions in 1+1 (GN, NJL models at infinite Nf):

Ginzburg-Landau analysis in 3+1 NJL models:

Nickel, Arxiv:0902.1778 Buballa, Carignano, Arxiv:1406.1367

Lifshitz point and Lifshitz regime

Lifshitz point and Lifshitz regime: Inhomogeneous polymers

Lifshitz regime: bicontinuous microemulsion

Jones, Lodge Polymer Journal (2012) 44, 131-146

Lifshitz point: O(N) effective model

$$\mathcal{L} = \frac{1}{2} (\partial_0 \phi)^2 + \frac{1}{2M^2} (\partial_i^2 \phi)^2 + \frac{Z}{2} (\partial_i \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{4} (\phi^2)^2 + \dots$$

3+1-dimensional model, we implicitly assume finite density and temperature *Z* is allowed to be negative. In this case:

Gap may close if Z gets sufficiently negative Condensate in this case: chiral spiral

$$\phi(x) = \phi_0(\cos(k_0 z), \sin(k_0 z))$$

A'la roton condensation in superfluid?

$$\Delta^{-1} = m_{eff}^2 - 2Z(k_z - k_0)^2 + \frac{1}{M^2}(4k_0k_z\vec{k}^2 + (\vec{k}^2)^2)$$

Anisotropic fluctuations

O(N) effective model

Mean-field phase diagram

 $\phi(x) = \phi_0(\cos(k_0 z), \sin(k_0 z))$

What to expect from fluctuations?

No long-range order is possible due to anisotropy:

$$\int d^2 k_{\perp} dk_{\parallel} \frac{1}{(k_{\parallel} - k_0)^2 + (k_{\perp}^2)^2} \sim \int d^2 k_{\perp} \frac{1}{k_{\perp}^2} \sim \log \Lambda_{IR}$$

Effective 1-dimensional reduction => phonon fluctuations of chiral spiral destroy long range order

No Lifshitz point is possible, only Lifshitz regime in d<= 4: $\int d^4k_{\perp} \frac{1}{k_{\perp}^4} \sim \log \Lambda_{IR}$

Either mass squared of Z must be generated non-perturbatively

In order to address these issue we use large N analysis

Infinite N phase diagram

Effects of fluctuations: dramatic change

No evidence for 2nd order phase transition to CS

Quantum Spin Liquid regime

Symmetric solution exists for any negative Z

Possible phase transition to chiral spirals must be of 1st order if it exist

Quantum Spin Liquid regime

Infinite N and Z large and negative:

$$m_0 \sim \frac{1}{2\pi} \frac{\lambda N}{Z^2},$$

$$k_0 \sim \frac{1}{\sqrt{2}} M \sqrt{|Z|},$$

Quantum spin liquid: quantum fluctuations prevent condensate formation

Entanglement over long distances instead of long-range order

Example:

- 1) Anti-ferromagnetically coupled spins on triangular lattice
- 2) Kitaev's Toric Code

Figures from an excellent review: arXiv:1601.03742

Finite N: perturbation theory

$$\mathcal{L} = \frac{1}{2} (\partial_0 \phi)^2 + \frac{1}{2M^2} (\partial_i^2 \phi)^2 + \frac{Z}{2} (\partial_i \phi)^2 + \frac{m^2}{2} \phi^2 + \frac{\lambda}{4} (\phi^2)^2 + \dots$$

We assume Z < 0 and the following ansatz:

 $\phi_0 = \phi_0(\cos(k_0 z), \sin(k_0 z), 0)$ $\phi_0^2 = \text{const}$

Minimize w.r.t. k_0 and ϕ_0 .

Find a double pole in the propagator of transverse fluctuations:

$$\Delta_{\chi}^{-1}(k) = \frac{1}{2M^2} \left(k^2 - k_0^2\right)^2$$

Simple ansatz is not consistent, system is disordered at very short distances

We cannot exclude more complex solution, but these are very hard to find

Finite N: lattice computation

No evidence for 1st / 2nd order phase transition

Experimental signatures

R. Pisarski and Fabian Rennecke arXiv:2103.06890

Conclusions

More open questions than answers:

1) Interplay of Critical End Point and Lifshitz regime?

Fluctuations in Lifshitz regime are only logarithmic, weaker than critical fluctuation.

Possible experimental signatures? Modulation momentum k0 should appear in fluctuations

2) Is there a room for chiral spirals anyway?

Lattice computations with external field?