OPTICAL ABSORPTION MEASUREMENTS ON SION COATING FABRICATED BY LOW PRESSURE CHEMICAL VAPOR DEPOSITION

Kun-Yao Chang

On behalf of the Taiwan GW Mirror Coating Team:

Tong-Yu Chen^{1,2}, Shiuh Chao¹, Daiki Tanabe², Henry Wong², Yuki Inoue³, Hsiang-Chieh Hsu², Feng-Kai Lin², Kun-Yao Chang^{2,3}, Chun-Huan Wang^{1,2}, Zi-Yu Wang^{1,2}, Chien-Yu Lin^{1,2}

¹ Institute of Photonics Technologies, National Tsing Hua University (NTHU)
 ² Institute of Physics, Academic Sinica (AS)
 ³ Department of Physics, National Central University (NCU)

CHiP Meeting September. 20th, 2024

OUTLINE

2

Motivations: SiON Coating with LPCVD
 New Fabrication Gas Line in TSRI
 Results
 Comparison with PECVD
 Future Plans

INTRDUCTION

CONCEPT

- WE ARE LIGO MEMBER. IN ORDER TO HAVE FUTURE LIGO VIRGO LIKE THE CRYOGENICS VIRGO, CURRENT COATING NOISE IS LIMITED BY LIGO SENTIVITY AND ALSO EFFECTED BY LOW FREQUENCY.
- TO SLOVE THESE PROBLEMS, WE HAVE TO DEVELOPE THE NEW COATING MATERIAL IN TSRI, WHERE THE PLACE THAT WE CAN MAKE THE NEW SAMPLE.
- NOWADAYS WE USE THE TSRI LOW PRESSURE CHEMICAL VAPOR DEPOSITION (LPCVD) TO HAVE STACK COATING, USING HIGH REFLECT AND LOW REFLECT LIKE SIN AND SION.
- IN THE FUTURE, WE'LL ADD AMORPHOUS SILICON TO BECOME HIGH REFLECT MATERIAL AND THEN ADDING SIN AND SION TO HAVE THREE LAYER MATERIAL.

HIGH LOW COATING

• INDEX REFRACTION:

- IN STACK COATING, WE USE TWO LAYER WITH HIGH-LOW INDEX REFLECTION TO COAT ON THE GLASS SUBSTRATE.
- FIRST WE COAT THE LOW REFRACTIVE INDEX LAYER LIKE SIN (INDEX REFLECTION:1.62), THEN WE COAT HIGH REFLECTIVE INDEX LAYER LIKE SION (INDEX REFLECTION:2.68).

WHY CHANGING SION COATING FROM PECVD TO LPCVD

ABSORPTION LOSS IN PECVD SION:

- NITRIDE-LIKE SION HAD LOWER MECHANICAL LOSS THAN IBS SIO₂ ANNEAL & SILICA-LIKE SION @ 10K
- SILICA-LIKE SION HAD LOWER MECHANICAL LOSS THAN IBS SIO₂ ANNEAL & NITRIDE-LIKE SION @120K
- IBS SIO₂ ANNEAL HAD LOWER ABSORPTION THAN SILICA-LIKE SION AND NITRIDE-LIKE SION
- THICKNESS REDUCTION PROBLEM
- PECVD SION WITH HIGH TEMPERATURE ANNEALING GIVES RISE TO THICKNESS REDUCTION.
- AT STACKING IT WITH A HIGH-REFRACTIVE-INDEX MATERIAL, EXPECTS PECVD SION HAVE NUMEROUS THERMAL EFFECTS, MAKING IT DIFFICULT TO PRECISELY CONTROL THE THICKNESS OF EACH LAYER.

TSRI LPCVD Facility

*

TSRI-LPCVD N2O Gas Line Construction

Project funded by AS for LSC Program;

- Proposal endorsed by OWG Convener, October 2022;
- Facility commissioned April 2024.

TSRI LPCVD

LOW PRESSURE CHEMICAL VAPOR DEPOSITION (LPCVD)

- LOW PRESSURE CHEMICAL VAPOR DEPOSITION (LPCVD) IS A HIGH TEMPERATURE DEPOSITION PROCESS (HENCE AVOIDING ANNEALING) AND PROVIDES LARGE AREA UNIFORM DEPOSITION.
- LOWER STRESS, LOWER N-H BOND DENSITY AND LOWER H ATOMIC DENSITY IN THE LPCVD FILMS THAN IN PECVD WAS REPORTED.
- WE EXPECT N-H BONDS CAN BE SIGNIFICANTLY REDUCED AND SI- BONDS BE LESS INCREASED BY USING LPCVD FOR DEPOSITION OF SION FILMS AND HENCE REDUCING EXTINCTION COEFFICIENTS.

LPCVD PROCESS

LPCVD SION: $SIH_2CL_{2(G)} + N_2O_{(G)} + NH_{3(G)} \rightarrow SIO_XN_YH_{Z(S)} + RESIDUAL GAS$

PARAMETER OPTIMIZATION: EFFECT OF CHANGING THE [SIH₂CL₂/NH₃ FLOW RATE RATIO] TO

THE EXTINCTION COEFFICIENTS.

Pressure(mTorr)	350							
Deposition Temperature(°C)	790							
SiH2Cl2 (sccm)	25	50	80	100	100			
NH ₃ (sccm)	100	100	80	50	25			
N ₂ O(sccm)	500	500	500	500	500			
SiH ₂ Cl ₂ / NH ₃ Flow-Rate Ratio	0.25	0.5	1	2	4			
Deposition rate(nm/s)	0.0115	0.0130	0.0124	0.0097	0.0069			

8

RESULTS

Pressure (mTorr)		350						
Temperature (°C)		790						
SiH ₂ Cl ₂ (sccm)		25	50 80 100		00			
NH₃ (sccm)		100	100	80	50	25		
SiH ₂ Cl ₂ /NH ₃ Flow-Rate Ratio		1/4	1/2	1/1	2	4		
Deposition Rate (nm/s)		0.0115	0.0130	0.124	0.0097	0.0069		
Bond Concentration	Dangling Bond Density (10 ¹⁸ cm ⁻³)	0.34±0.04	0.35±0.23	0.39±0.08	0.60±0.04	1.32±0.05		
	N-H (10 ²¹ cm ⁻³)	3.33	3.75	2.35	0.57	0.28		
	Si-H (10 ²¹ cm ⁻³)	<dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>< DL</td></dl<></td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td><dl< td=""><td>< DL</td></dl<></td></dl<></td></dl<>	<dl< td=""><td><dl< td=""><td>< DL</td></dl<></td></dl<>	<dl< td=""><td>< DL</td></dl<>	< DL		
	Si-N (10 ²¹ cm ⁻³)	43.78	46.62	43.69	32.55	19.91		
	Si-Si (10 ²¹ cm ⁻³)	18.58	18.79	17.90	16.00	11.50		
	Si-O (10 ²¹ cm ⁻³)	47.51	44.92	48.57	59.69	73.84		
Atomic Density	Si (10 ²¹ cm ⁻³)	32.11	32.28	32.01	31.06	29.19		
	O (10 ²¹ cm ⁻³)	2 3.75	22.46	24.29	29.84	36.92		
	N (10 ²¹ cm ⁻³)	15.69	16.79	15.35	11.04	6.73		
	H (10 ²¹ cm ⁻³)	3.30	3.75	2.35	0.57	0.28		
Composition		SiO _{0.74} N _{0.49} H _{0.1}	SiO _{0.7} N _{0.52} H _{0.12}	SiO _{0.76} N _{0.48} H _{0.07}	SiO _{0.96} N _{0.36} H _{0.02}	SiO _{1.26} N _{0.23} H _{0.01}		
Refractive Index, n	1064 nm	1.673	1.698	1.676	1.624	1.564		
	1550 nm	1.670	1.695	1.674	1.621	1.562		
	1950 nm	1.669	1.694	1.673	1.620	1.561		
κ (10⁻⁵)	1064 nm	0.36±0.06	0.46±0.05	0.30±0.04	0.11±0.04	0.23±0.05		
	1550 nm	0.49±0.07	0.57±0.02	0.35±0.07	0.28±0.09	0.22±0.07		
	1950 nm	0.90±0.08	0.96±0.10	0.78±0.07	0.71±0.07	0.89±0.08		
E _g (eV)		5.482	5.245	5.198	5.176	3.481		
* Detection Limit (DL) of bond concentration and atomic density is 10 ²⁰ cm ⁻³								

By changing the ratio of LPCVD to find the different result:

- The ratio of SiH₂Cl₂ (25, 50, 80, 100 sccm) and NH₃ (100, 80, 50, 25 sccm)
- > We can compare the result of Refractive Index and Extinction Coefficient

COATING THICKNESS UNIFORMITY

PECVD SiON

MEASURED BY SPECTROSCOPIC ELLIPSOMETER.

- DETECT 49 POINTS ON 3INCH WAFER
- LPCVD IMPROVED OVER PECVD
- RESIDUAL SYSTEMATIC
 DEVIATIONS IN UP-DOWN
 DIRECTION

Average

Min.

Max.

Std. Dev.

% Range

898.53

869.08

924.69

14.7

6.189

LPCVD SiON

947.68

944.84

942.00

939.15

936.31

933.47

930.63

4

SUMMARY

LPCVD, a high temperature low pressure deposition method, was demonstrated to deposit SiON thin films with lower extinction coefficients than the PECVD methods.

The best extinction coefficients are

1.1x10⁻⁶ at 1064nm, 2.8x10⁻⁶ at 1550nm and 7.1x10⁻⁶ at 1950nm

LPCVD SiON shows improved characteristic properties over PECVD SiON:

- ➤ Much lower hydrogen content and N-H bond density → lower optical loss
- Better thickness uniformity -> promising prospects on stacking
- Future Plans
 - Amorphous silicon is a strong candidate as high-index material for future gravitational-wave detectors, both at room temperature (1064 nm) in multimaterial mirror designs and at cryogenic temperatures (1550 and 2000 nm) in standard mirror designs.
 - We'll stack three layers with high-low method, it similar with before but we add amorphous silicon in high refractive index.