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Motivation



Motivation

• In the recent years, effective field theories of open systems

draws several attentions from different areas.

• Most literature focus on the asymptotic behaviour of

observables with specific initial conditions.

• We begin with establishing a theory of quantum mechanical

damped harmonic oscillators (DHO) with general initial

condition through path integral.
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Formalism



Formalism

• The real-time dynamics of open quantum system cannot be

described by the scattering amplitudes. The observables

which we care is the expectation value:

⟨Ô(t)⟩ = Tr[Ôρ̂]. (1)

• We exploit the Schwinger-Keldysh formalism (in-in formalism)

to construct the generating functional of correlation functions.
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Formalism

• Effective action can be written as

Seff [X+, X−] = S[X+]− S[X−]︸ ︷︷ ︸
analogue of Û ρ̂(t)Û†

+ SIF[X+, X−]︸ ︷︷ ︸
effect of environment

(3)

where SIF[X+, X−] is called influence functional.

Feynman and Vernon, Annals Phys. 24 (1963)
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Figure 1: Illustration of the time evolution in Schwinger-Keldysh

formalism
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Formalism

• We consider the effective action Agarwal and Chu, Phys.Rev.Res. 6 (2024)

Seff [X+, X−]

=

∫ tf

ti

dt
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Ẋ2

− − ω2
0X

2
−

)
− iα

2
(X+ −X−)
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(4)

where α, γ > 0.

• We treat Lint as perturbations.
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Results



Results: Cubic interaction

• Consider

Lint = − λ

3!
X3

+ +
λ

3!
X3

−. (5)

• We evaluate the expectation value of X̂ and obtain

⟨X̂(t)⟩ = ⟨X̂(ti)⟩0∆(t− ti) + ⟨P̂ (ti)⟩0 G
+(t− ti)

− λ

3!

∫ tf

ti

dt′
(
3[G+(t′ − ti)]

2G+(t− t′) ⟨P̂ 2(ti)⟩0

+ 3G+(t− t′)G+(t′ − ti)∆(t′ − ti) ⟨{X̂(ti), P̂ (ti)} ⟩0
+ 3[∆(t′ − ti)]

2G+(t− t′) ⟨X̂2(ti)⟩0

+ 3G+(t− t′)Gα(t
′, t′; ti)

)
+O

(
λ2

)
(6)
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Results: Cubic interaction

• The first order correction from cubic interaction contains

1. Terms involve initial two-point functions,

2. Terms are independent to initial condition. (Tadpole diagram)

• As t → ∞,

⟨X̂(t)⟩ → − αλ

8γω2
0

(7)

• We visualise the first order correction of one-point function

λ−1( ⟨X̂(t)⟩0 − ⟨X̂(t)⟩) with parameters ω = 3, γ = 0.3,

α = 10, and Ω0 = 1. We set ti = 0 and t = T
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Results: Cubic interaction
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Future direction



Future direction

• Extension to quantum field theory of open system

• The loop calculation and renormalisation with generic initial

conditions.

• Relation between renormalisation group flows and the

quantities in quantum information
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