Status of the ZDC EM-Calorimeter Prototype with Cosmic Ray

朱珈聖 Chu, Chia-Sheng

Motivation

- The Electron-Ion Collider (EIC) includes the Electron-Proton/Ion Collider (ePIC) experiment which is the first detector to study properties of nuclear matter and the role of gluons in the strong force.
- The **Zero-Degree Calorimeter (ZDC)** at the ePIC helps measure the production of particles from electron-ion collisions.

Electron-Ion Collision

ePIC Detector

Introduction & Goal

Introduction

- The detector is an **EM-Calorimeter** which can catch charge particles and get their energy.
- There is a beam test with positrons (e⁺) at the ELPH, Tohoku University, February 2024. (Beam energy: 47.18 ~ 823.26*MeV*)
- The beam test showed a severe nonlinear gain in the SiPM.

Goal

- Use cosmic rays as the source to measure the cosmic MIP. (Cosmic muon energy $\approx 4GeV$)
- Check whether the ADC saturation and SiPM nonlinear behavior.

Setup

- The ZDC EM-Calorimeter prototype is composed of 8x8 LYSO crystal and SiPM. 8 channels
- Setting: •
 - Location: On the 10 floor ٠
- HV Value: Both 4E (ROCA ROCB) •

• VF Value (Trigger Value): D2 (200)

- Power Supply: 5.07V ٠
- Events per week: \approx 2,000,000

Chu, Chia-Sheng

8 channels

ω channels

Δ

Result – ADC_{max} spectrum

- ADC don't have saturation. \rightarrow The maximum ADC value is 11000.
- There have a slope change at $5000 \text{ADC} \sim 6000 \text{ADC}$ in ADC_{max} .
 - \rightarrow The SiPM will have serious nonlinear behavior.

Chu, Chia-Sheng

Result - Single Hit Selection

- Select the event only have "single trigger".
- There don't have any peak in the single hit spectrum.

Single trigger event ADC: 402 ADC: 167 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 1 2 8 8

Result - Line Selection

- 1. Select the event without outer ring.
 - \rightarrow Ensure event penetrate the whole detector.
- 2. One of second ring edge trigger is within 2. \rightarrow Select the event is the line.

- There have lats at formal on the formation of the forma
- Here cheet judge ordnere ti sjutdge obsendined the incident point.

Cannot have trigger

To Do List

- Add the position detector to improve the resolution and get the exact cosmic muon incident point.
- Compare data with the simulation to help analysis.
- TAKE MORE DATA!

Position detector

Summary

• Goal

- Use the cosmic ray as the source to measure the characteristic of ZDC EM- Calorimeter.
- Check for nonlinear behavior in the SiPM and saturation in the ADC.

ADC_{max} spectrum

- There have a slope change at 5000ADC ~6000ADC in $\mathrm{ADC}_{\mathrm{max}}$.
- ADC don't have the saturation, but SiPM have nonlinear behavior.

Single Hit Selection

- There don't have any peak in the single hit curve.
- Line Selection
 - There is a flat peak at 6000 ADC in the ADC_{all} .
- TO DO List
 - Add the position detector to get the exact cosmic muon incident point.
 - Compare data with the simulation.
 - TAKE MORE DATA!

Backup

Comparison of Various Crystals

	Xo	LY (ph/MeV)	T dep. of LY (%/K)	Decay time (ns)	λ _{em} nm
PbWO₄ (CMS)	0.89 cm	200	-1.98	5 (73%) 14 (23%) 110 (4%)	420
LYSO	1.14 cm	30,000 (market standard)	-0.28	36	420
GAGG	1.59 cm	40,000 - 60,000		50-150	520
SciGlass	2.4-2.8 cm	>100		22-400	440-460

Cosmic Ray

Primary cosmic ray

- Cosmic rays are produced by the sun and elsewhere in the galaxy.
- 95% are protons, 4% are helium nuclei.

Secondary cosmic ray

- High-energy particles and γ -rays collide with the atmosphere, producing a large number of secondary particles.
- The chain reaction is called "Air Shower".

Around the sea level

• Muon are the most abundant charged particles at the sea level.

Cosmic Ray and Air Shower

• At the sea level, the muon flux is greater than other particle.

From: http://pdg.lbl.gov/2013/reviews/rpp2013-rev-cosmic-rays.pdf

Minimum Ionizing Particle (MIP)

• When a charged particle has kinetic energy greater than twice its rest energy, it will lose the minimur energy as it passes through substances.

• The particle in
$$\beta \gamma \approx 3$$
 have the $-\frac{1}{\rho} \frac{dE}{dx} \approx 1 \sim 2$.

Bethe–Bloch equation:

$$\frac{1}{\rho}\frac{dE}{dx} \approx -\frac{4\pi\hbar^2 c^2 \alpha^2}{m_e v^2 m_u}\frac{Z}{A} \left\{ \ln\left(\frac{2\beta^2 \gamma^2 c^2 m_e}{I_e}\right) - \beta^2 \right\}$$

Energy curve

• The ADC - Edep change function need to be calibration.

Cosmic muon
$$\approx 4$$
GeV $\rightarrow \beta \gamma = 37.339$
 $\rightarrow \frac{1}{\rho} \frac{dE}{dx} \approx 1$
Crystal: *LYSO*(*Lu*^{1.8}*Y*.²*SiO*⁵: *Ce*)
 $\rho = 7.1(g/cm^3)$

- Zenith(one trigger): $8.8(cm) \cdot 1 \cdot 7.1 = 61.6(MeV)$
- Multiple trigger:

 $10.69(cm) \cdot 1 \cdot 7.1 = 75.96(MeV)$

 $\sqrt{8.8^2 + 2(7.12 \cdot 6)^2}$

Each event – ADC (Without selection)

Chu, Chia-Sheng

Each Event after Line Selection

There have some events is the electron scatter not muon.

Chu, Chia-Sheng

ADC spectrum zoom in & linear scale

ADC_{all} - trigger channels curve

The more channel is trigger, the ADC_{all} is larger.

