Experimental Plan and Execution for Axion Haloscope Detection at 8.8µeV

Presenter: Yi-Hsiang Kuo

Content in collaboration with: Prof. Chang Yuan-Hann and the TASEH team

How can we detect Axion?

Axions will convert to photons in a magnetic field.

$$P_{a \to \gamma} = \eta g_{a \gamma \gamma}^2 \left[\frac{\rho_a}{m_a} \right] B^2 V C Q_L$$

η: The fraction of the converted power transmitted to the readout probe g_{aγγ}: The axion-photon coupling constant ρ_a: local dark matter density m_a: axion mass
B: magnetic field strength
V: cavity volume
C: form factor
Q_L: the cavity loaded quality factor

CD102 Result

A search excluded $|g_{a\gamma\gamma}| \gtrsim 8.2 \times 10^{-14} \,\text{GeV}^{-1}$, a factor of 11 above KSVZ model, in the m_a range 19.47 – 19.84 μ eV in 2022.

Chang, Hsin, et al. "First results from the Taiwan axion search experiment with a haloscope at 19.6 µeV." *Physical Review Letters* 129.11 (2022): 111802.

11/20/2024

Overview

Target:

An axion haloscope search the m_a region: 8.48-9.10 µeV (2-2.3 GHz), excluding $|g_{a\gamma\gamma}| \gtrsim 7.5 \times 10^{-15} \text{ GeV}^{-1}$ (theoretic value of KSVZ model)

Configuration plan:

- 1. Superconducting magnet, providing B = 6 T at the center
- 2. Josephson parametric amplifier (JPA), providing T_{sys} = 240 mK (two-photon noise)
- 3. Magnetic shielding, protection the JPA from the surrounding magnetic field.
- 4. Tunable cylindrical 2-2.3 GHz cavity, with V = 4 L, C = 0.46, and $Q = 8 \times 10^3$
- 5. Cavity radiation calibration, a method directly characterizing the detection chain

Magnetic Shielding

- The superconducting coils and five-layer magnetic shield protects the JPA from ~ 1600 G magnetic field is confirmed by the readings from the two Hall sensors.
- We avoid ramping up to 9 T to further prevent magnetic field penetration inside the shielding.

Cylindrical Cavity

Frequency tuning mechanism Tuning rod $f_{nml} = \frac{c}{2\pi\sqrt{\epsilon_r\mu_r}} \sqrt{(\frac{p_{nm}}{r})^2 + (\frac{l\pi}{h})^2}$ $f_r = 2.0 - 2.3 \text{ GHz}$ • D = 128 mm : (diameter) •

- L = 320 mm : (height)
- *V* ~ 4 L
- *C* ~ 0.46
- $Q_L \sim 8000$

Cylindrical Cavity

11/20/2024

Cavity radiation calibration

• Calibration is crucial for finding gain of the output signal in the detection chain and the system noise of the system.

$$P_{o} = Gk_{B}\Delta f(|S_{11}|^{2}\tilde{T}_{att} + |S_{10}|^{2}\tilde{T}_{c} + \tilde{T}_{a}), \begin{cases} S_{11}(f) = \frac{(\kappa_{0} - \kappa_{1})/2\pi + 2i(f - f_{0})}{(\kappa_{0} + \kappa_{1})/2\pi + 2i(f - f_{0})}\\\\S_{10}(f) = \frac{2\sqrt{\kappa_{1}\kappa_{0}}/2\pi}{(\kappa_{0} + \kappa_{1})/2\pi + 2i(f - f_{0})}. \end{cases}$$

- We have a known radiation power from cavity as our calibration source, to precisely characterize our detection chain.
- This calibration method has been successfully carried out in a 4 GHz cavity with an expected result.

Expectation

CD102

Coming run

 $P_{a \to \gamma} = \eta g_{a \gamma \gamma}^2 \left[\frac{\rho_a}{m_a} \right] B^2 V C Q_L, \ g_{a \gamma \gamma} = \left(\frac{g_{\gamma} \alpha}{\pi \Lambda^2} \right) m_a$

Parameter	CD102	Coming run
T_{sys} (mK)	2300	240
η	0.69	0.67
$m_a (\mu eV)/f_c (GHz)$	$\begin{array}{r} 19.47 - 19.84 \\ 4.71 - 4.80 \end{array}$	8.48 - 9.10/ 2 - 2.3
<i>B</i> (T)	7.8	6
<i>V</i> (L)	0.23	4
С	0.67	0.46
Q_L	2.0×10^{4}	8×10 ³
$ g_{a\gamma\gamma}/g^{KSVZ}_{a\gamma\gamma} $	11	2.7

Expectation

Conclusion

- 1. Four goals have been achieved for the following run.
 - A JPA reduce the system noise to the level of two-photon noise.
 - The 2GHz cavity works at low temperatures.
 - The shielding ability have been confirmed with Hall sensors.
 - The system noise is accurately determined through cavity radiation calibration.
- 2. We are ready to proceed with a data taking run this year.

Magnetic Shielding

Cavity radiation calibration

VST

RT amp

HEMT

JPA

• Probe 1

Cavity

 P_{0}

• The detection chain for axion haloscope search is the signal path from a cavity to the signal analyzer, where the gain is *G* and the system noise is given by

$$T_{SYS} = \frac{1}{k_B \Delta f} \frac{P_{ave}/G}{\sqrt{N_{ave}}}.$$

- The radiation emitted from an object x is $\tilde{T}_x = \frac{hf}{k_B} \left(\frac{1}{e^{\frac{hf}{k_B T_x}} - 1} + \frac{1}{2} \right).$
- The output power of the detection chain is $P_{o} = Gk_{B}\Delta f \left(|S_{11}|^{2} \tilde{T}_{att} + |S_{10}|^{2} \tilde{T}_{c} + \tilde{T}_{a} \right),$ $\begin{cases} S_{11}(f) = \frac{(\kappa_{0} - \kappa_{1})/2\pi + 2i(f - f_{0})}{(\kappa_{0} + \kappa_{1})/2\pi + 2i(f - f_{0})} \\ S_{10}(f) = \frac{2\sqrt{\kappa_{1}\kappa_{0}}/2\pi}{(\kappa_{0} + \kappa_{1})/2\pi + 2i(f - f_{0})}. \end{cases}$

11/20/2024

Exclusion Plot

