Experimental Plan and Execution for Axion Haloscope Detection at 8.8µeV

Presenter: Yi-Hsiang Kuo

Content in collaboration with: Prof. Chang Yuan-Hann and the TASEH team

1

How can we detect Axion?

▪ Axions will convert to photons in a magnetic field.

▪ The conversion rate is enhanced if the photon's frequency correspond to a cavity's resonant frequency.

$$
P_{a\to\gamma} = \eta g_{a\gamma\gamma}^2 \left[\frac{\rho_a}{m_a}\right] B^2 V C Q_L
$$

 \blacksquare

 \blacksquare

 η : The fraction of the converted power transmitted to the readout probe $g_{\alpha\gamma\gamma}$: The axion-photon coupling constant ρ_a : local dark matter density m_a : axion mass : magnetic field strength V: cavity volume : form factor Q_L : the cavity loaded quality factor

CD102 Result

A search excluded $|g_{a\gamma\gamma}| \gtrsim 8.2 \times 10^{-14}$ GeV⁻¹, a factor of 11 above KSVZ model, in the m_a range 19.47 – 19.84 μeV in 2022.

Chang, Hsin, et al. "First results from the Taiwan axion search experiment with a haloscope at 19.6 μeV." *Physical Review Letters* 129.11 (2022): 111802.

Overview

Target:

An axion haloscope search the m_a region: 8.48-9.10 μeV (2-2.3 GHz), excluding $|g_{a\gamma\gamma}| \gtrsim 7.5 \times 10^{-15}$ GeV⁻¹ (theoretic value of KSVZ model)

Configuration plan:

- 1. Superconducting magnet, providing $B = 6$ T at the center
- 2. Josephson parametric amplifier (JPA), providing $T_{sys} = 240$ mK (two-photon noise)
- 3. Magnetic shielding, protection the JPA from the surrounding magnetic field.
- 4. Tunable cylindrical 2-2.3 GHz cavity, with $V = 4$ L, $C = 0.46$, and $Q = 8 \times 10^3$
- 5. Cavity radiation calibration, a method directly characterizing the detection chain

Magnetic Shielding

- The superconducting coils and five-layer magnetic shield protects the JPA from $\sim 1600 \text{ G}$ magnetic field is confirmed by the readings from the two Hall sensors.
- We avoid ramping up to 9 T to further prevent magnetic field penetration inside the shielding.

(Mid coil) Hall sensor

(Shielding box) Hall sensor

5

Cylindrical Cavity

Copper-coated cavity

Cylindrical Cavity

11/20/2024 **7**

Cavity radiation calibration

• Calibration is crucial for finding gain of the output signal in the P_0 detection chain and the system noise of the system.

$$
P_o = G k_B \Delta f \left(|S_{11}|^2 \tilde{T}_{att} + |S_{10}|^2 \tilde{T}_c + \tilde{T}_a \right), \begin{cases} S_{11}(f) = \frac{(\kappa_0 - \kappa_1)/2\pi + 2i(f - f_0)}{(\kappa_0 + \kappa_1)/2\pi + 2i(f - f_0)} \\ S_{10}(f) = \frac{2\sqrt{\kappa_1\kappa_0}/2\pi}{(\kappa_0 + \kappa_1)/2\pi + 2i(f - f_0)} \end{cases}.
$$

- We have a known radiation power from cavity as our calibration source, to precisely characterize our detection chain.
- This calibration method has been successfully carried out in a 4 GHz cavity with an expected result.

8

Expectation

CD102 Coming run

 $P_{a\rightarrow\gamma} = \eta g_{a\gamma\gamma}^2 \left[\frac{\rho_a}{m}\right]$ m_a B^2VCQ_L , $g_{a\gamma\gamma} =$ g_{γ} α $\frac{g\gamma\alpha}{\pi\Lambda^2}$) m_a

Expectation

Conclusion

- 1. Four goals have been achieved for the following run.
	- A JPA reduce the system noise to the level of two-photon noise.
	- The 2GHz cavity works at low temperatures.
	- The shielding ability have been confirmed with Hall sensors.
	- The system noise is accurately determined through cavity radiation calibration.
- 2. We are ready to proceed with a data taking run this year.

Magnetic Shielding

Cavity radiation calibration

 P_{Ω}

VST

RT amp

HEMT

JPA

 \blacktriangle Probe 1

Cavity

• The detection chain for axion haloscope search is the signal path from a cavity to the signal analyzer, where the gain is G and the system noise is given by

$$
T_{sys} = \frac{1}{k_B \Delta f} \frac{P_{ave}/G}{\sqrt{N_{ave}}}.
$$

- The radiation emitted from an object x is $\widetilde{T}_x = \frac{hf}{k_B}$ k_B 1 \boldsymbol{e} ℎ $k_B T x - 1$ $+\frac{1}{2}$ 2 .
- The output power of the detection chain is $P_o = G k_B \Delta f (|S_{11}|^2 \tilde{T}_{att} + |S_{10}|^2 \tilde{T}_c + \tilde{T}_a),$ $S_{11}(f) = \frac{(\kappa_0 - \kappa_1)/2\pi + 2i(f - f_0)}{(\kappa_0 + \kappa_1)/2\pi + 2i(f - f_0)}$ $\kappa_0 + \kappa_1$)/2 π +2 $i(f - f_0)$ $S_{10}(f) = \frac{2\sqrt{\kappa_1\kappa_0}/2\pi}{(\kappa_0+\kappa_1)/2\pi+2i}$ $\kappa_0 + \kappa_1$)/2 π +2 $i(f - f_0)$.

Exclusion Plot

