Development of a High-Sensitivity RF Resonant Cavity for TASEH

Wei-Yuan Chiang

NSRRC Light Source Division

2024 CHiP Annual Meeting, Yilan, Taiwan 2024/12/21

Outline

Resonant Cavity Design Evolution

Prototype of cone shell cavity

Design of cone shell cavity

E-field measurement of the cavity

Material selection issues for cavity fabrication

Gearbox Design and Manufacturing

Resonant cavity design evolution

E Field [V/n]

Resonant cavity design evolution

$$f_{nml} = \frac{c}{2\pi\sqrt{\epsilon_r\mu_r}} \sqrt{(\frac{p_{nm}}{r})^2 + (\frac{l\pi}{h})^2}$$

TM₀₁₀ mode pattern

TASEH collaboration, RS/ 93, 084501 (2022)

Chao-Lin Kuo, JCAP02(2021)018

Prototype of cone shell cavity

E-field distribution TM₀₁₀

Design of RF leakage prevention mechanism

Chao-Lin Kuo JCAP06(2020)010

Outer cone angle optimization

Comparison of 2 Cavities

Mode crossing of cone shell cavity

Comparison between simulation and measurement

Eigenmode of Cone Shell Cavity

E-field measurement - Coaxial Cable Coupling Measurement

HFSS simulation results

Bead-pull Measurement

1.1653E+0 1.0682E+08

9.7113E+07 8.7404E+0

7.7696E+07

6.7985E+07 5.8276E+07

4.8567E+07 3.8858E+07

2.9149E+07

.9440E+07

9.7308E+0

E-field Measurement

Probe Measurement

Bead-pull Measurement

Bead-pull Measurement

Inner & outer cone misalignment

Material selection issues for cavity fabrication

Eddy currents generated during superconducting magnet quenching cause RD damage OFHC -

Stainless steel 316 + coated copper

A cylindrical cavity made of stainless steel 316 and then coated with copper.

Copper Coating Methods:
1.Traditional Electroplating
2.Cold Spray Coating
3.Cold Spray Coating + Traditional Electroplating
4.Hot Isostatic Pressing (HIP)

Gearbox Design and Manufacturing

Inner cone weight = 2.7 kg

Summary

- Completed the theoretical design and prototype model fabrication of the cone shell cavity, verifying its feasibility. The sensitivity is estimated to improve by a factor of 2.56.
- A complete electric field distribution measurement system has been established.
- Improved material selection and manufacturing processes for resonant cavity fabrication.
- Completed the gearbox design and initiated the production of a prototype model.

