

HGCAL DPG Related Topics

Longitudinal Shower Profile, Event Reconstruction, and 2024 HGCAL Beam Test Events

Yu-Wei Kao National Taiwan University

TIDC Workshop @ Yilan Toucheng (宜蘭頭城)

22. November. 2024

High Granularity Calorimeter

5D imaging sampling calorimeter

- Covering $1.5 < |\eta| < 3$
- Electromagnetic (CE-E): 26 layers
- Hadronic (CE-H): 21 layers

Active materials

- Silicon sensors
- Plastic scintillator with SiPM readout

Passive materials

- Lead absorber plates
- Copper cooling plates
- CuW baseplates
- Compact and dense (~225 tons)

- Study of longitudinal shower profile in HGCAL
- HGCAL event reconstruction using TICL framework
- Raw data handling & 2024 beam test events
- Summary

Longitudinal Shower Profile

Photo source: https://www.businesstoday.com.tw/article/category/80732/post/201306060034/

Typical EM Shower Profile

https://www.physi.uni-heidelberg.de/~sma/teaching/ParticleDetectors2/sma_ElectromagneticCalorimeters.pdf

Longitudinal Shower Profile in 2018 beam test

CMS HGCAL collaboration et al 2022 JINST 17 P05022

- Zigzag patterns appear in HGCAL longitudinal shower profile
- Understand its physical mechanism can
 - Improve Data/MC agreement
 - More accurate reconstruction of the energy of EM particles
 - Optimize HGCAL trigger design

Si-CE-H

Prototype in the 2018 HGCAL beam test activity

~1m

AHCAL

2021 JINST 16 T04002

"Sandwich" Placement of Silicon Modules

Toy Detectors in Geant4 Simulation

Scheme (c)

All PCB before Si

doi:10.6342/NTU202403742

Effect of Adding PCB Layers

No zig-zag is found in the geometry with alternating thickness

22. Nov. 2024

Effect of Adding PCB Layers

TIDC Annual Meeting

Effect of Adding PCB Layers

- PCB layers have shielding effects
- Zigzag pattern appears in alternating PCB placement!

Flag Backward Hits in Geant4 Simulation

GEometry ANd Tracking 4

- A platform for the simulation of the particle passage through matter using Monte Carlo method.
- Based on C++ with a modern object-oriented design.
- Geant4 includes facilities
 - ► geometry
 - ► tracking
 - detector response
 - ► run management

- Step Pre-step point Boundary Post-step point
- → Add a new variable indicating hits from backward tracks!
- visualization and user interface

"Backward hits"

https://en.wikipedia.org/wiki/Geant4

https://indico.cern.ch/event/781244/contributions/3251881/attachments/1782480/2900505/Introduction-and-Kernel-Course-Jan2019.pdf

"Backward" Compton Scattering

22. Nov. 2024

Longitudinal Profile for Deposited Energy

Toy Detectors

D86 in CMSSW

Putting more realistic passive layers should evolve in the observed zigzag pattern

HGCAL Event Reconstruction

Materials from 2024 LHCC poster (link)

Photo source: https://www.businesstoday.com.tw/article/category/80732/post/201306060034/

TICL Framework

• The Iterative CLustering framework

Felice Pantaleo et al 2023 J. Phys.: Conf. Ser. 2438 012096

- Flexible and modular framework
- Core algorithms are friendly to heterogeneous computing
- Initially designed for the HGCAL reconstruction, and currently being extended to potentially become the particle flow framework for phase-2

Source: Wahid Redjeb et al, https://indico.cern.ch/event/1474681/?view=standard_numbered#22-the-cms-phase-2-high-granul

Source: Wahid Redjeb et al, https://indico.cern.ch/event/1474681/?view=standard_numbered#22-the-cms-phase-2-high-granul

22. Nov.

Particle Flow Interpretation

TICL candidate building

- 1. HGCAL and ETL time compatibility
- Link track and linked-tricksters
- 2. Additional trackster merging
- Apply energy regression and PID on final Trackster collection

Source: Wahid Redjeb et al, https://indico.cern.ch/event/1474681/?view=standard_numbered#22-the-cms-phase-2-high-granul

525 mation

- Hits: Time of arrival $(1 + \frac{5}{x})^{10}$ $\frac{5}{10}$ $\frac{15}{20325}$ $\frac{425}{x}$ ime-to-digital converter
- Layer average of the mass time weighted with time resolution
- Trackster: project layer clusters onto trackster barycenter plane
- TICL candidates
 - Trackster time propagated back to the point closest to the beam spot
 - Improvement from usage of HGCAL local time and propagation along the trajectory of track

Source: Aurora Perego et al, https://indico.cern.ch/event/1474681/?view=standard_numbered#23-use-of-time-information-in

Improved Energy Resolution

- Latest TICL development brought improvement in every step of the chain
 - Better EGamma performance with the improved SuperClustering
 - Better Hadronic Reconstruction
 - Improved final Particle Flow Interpretation

Source: Wahid Redjeb et al, https://indico.cern.ch/event/1474681/?view=standard_numbered#22-the-cms-phase-2-high-granul

2024 Raw Data Handling & Test Beam

Partial Selected Materials

Photo source: https://www.businesstoday.com.tw/article/category/80732/post/201306060034/

HGCAL Raw Data Handling

Phase-2 upgrade of new end-cap calorimeter

- 6 million channels $\rightarrow O(700k)$ hits per event
- Heterogeneous computing
- Highly parallelization algorithms

HGCAL Raw Data Handling

- 2022 October working group built
- 2023 Aug/Sep test-beam events
- Goal: RAW → DIGI → RECO → DQM / Nano
 - Level-0 calibration algorithms are developed
 - Algorithms are ported to Alpaka EDProducer for heterogeneous computing
 - HGCAL DQM service is established from scratch for the test beam activities

2024 Data Flow in Offline Software

2024 Test Beam System

Source: HGCAL DPG Presentation

Description of the set up Silicon V3 system

The setup consists of two identical layers, each assembled with three silicon modules (300 µm thick sensors) featuring a T-shape wagon and LD engine. A third layer, referred to as the "Partial train," includes one full module (ROCv3B) and one Semi-Right hexaboard. The LD full modules are equipped with HGCROC3B, and the concentrator mezzanine is equipped with ECONT-Prod1 and ECOND-Prod1. Additionally, a partial concentrator mezzanine for the Semi-Right also utilizes production ECONs.

Geometrical Layout

22. Nov. 2024

Setup in Magnetic Field

Source: HGCAL DPG Presentation

Description of the set up

HGCAL beam test in magnetic field

Schedule at SPS-H2 Beam Line

1/09–25/09: Magnet during 5 days and beam with modules using ROCv3B and production ECONs.

Back-end tests:

- Serenity system with VU7P.
- DTH board.
- Software based on HERD and XDAQ.

Beam Position with Magnetic Field

Amina Zghiche 6:58 PM run 1726942607 200GeV electrons 3T

Evaluation of Pedestal and Noise

Source: HGCAL DPG Presentation

22. Nov. 2024

Some Highlights: Noise Study

Source: HGCAL DPG Presentation

Caption: Distributions of the RMS of calibrated RecHits (in ADC units) after applying pedestal and common mode corrections. From left to right, the plots represent different Si cell areas, different modules, and different readout chips. These distributions correspond to the same run shown on slides 6 and 7.

Caption: Noise distribution as a function of cell area, normalized to the area of a full cell. A red curve shows the result of an unbinned fit to the data using a polynomial function, alongside the expected values based on HGCROC simulations.

Some Highlights: MIP Scale Study

Source: HGCAL DPG Presentation

Comparison of Channel 219 from ML-F3WX-IH0016 in different Relays

Summary

Photo source: https://www.businesstoday.com.tw/article/category/80732/post/201306060034/

Summary

- Our Geant4 simulations reveal that the observed zigzag pattern stems from detector geometry and shielding of backward-scattered secondary particles. Understanding this energy deposition pattern will enable more efficient trigger criteria for the HGCAL detector in Phase-2 operation.
- Various steps in the TICL framework have been improved, including better linking algorithms, PF interpretation, treatment in timing information, resulting in an enhancement in both time and energy resolution.
- The 2024 beam test campaign enabled us to test a full chain of sensors, DAQ and offline software. More analysis of test beam data is ongoing, quantifying the performance of pre-series HGCAL components.

01. October. 2024 HGCAL Beam Test Campaign

Thank you for your attention

Backup

HGCAL reconstruction

CLUstering of Energy (CLUE) algorithm

- Developed based on Imaging Algorithm
- Input hits and output 2D layer clusters
- Energy density based
- Reduce dimensionality of the problem (10⁵ hits to 10⁴ layer clusters)

"The Iterative CLustering" (TICL) Framework

- Input 2D layer clusters and output 3D objects / showers (TICL candidates)
- Iterative algorithm
- Electromagnetic showers are easier to reconstruct
- Hadronic showers are reconstructed after EM showers

Reference: The HGCAL website and Marco Rovere's slides

Skeleton of iteration

Five-step procedure of an iteration

- Filter and mask layer clusters
- Define seeding region
- Pattern recognition
- Link the recognized patterns
- Cleaning and classification

HGCAL Muon Tomography

Geant4 Study Summary

- Our Geant4 simulations reveal that the observed zigzag pattern stems from detector geometry and shielding of backward-scattered secondary particles.
- Future studies with realistic detector geometry will clarify the origin of this zigzag energy deposition pattern.
- Understanding this energy deposition pattern will enable more efficient trigger criteria for the HGCAL detector in Phase-2 operation.

TICL Summary

Latest development

- Better EGamma performance with the improved SuperClustering
- Better Hadronic Reconstruction
- Improved final Particle Flow Interpretation

Future development

- Fine tune Hadronic Linking algorithm
- Improve combination of energy between Tracks and Tracksters
- Improve PF Interpretation combining Egamma workflow with Hadronic reconstruction
- Redesign Particle Flow Barrel reconstruction and integrate it in TICL

Thank you for your attention

11. July. 2024 16th Patatrack Hackathon Event Italian Pizza event @ CERN Prevessin