ePIC Barrel TOF Mechanical Structure

22 November 2024 TIDC Annual Meting 2024

> Yi Yang Academia Sinica

ePIC Detector

Barrel TOF Participation

Basics of Barrel TOF

- BTOF is composed of 288 half staves (symmetric/asymmetric?)
- 32 AC-LGAD strip-type sensors on one half stave
 - Timing Resolution: 35 ps
 - Spatial resolution: 30 μ m in r ϕ
- Radius is 63 66 cm from the beam pipe covering -1.42 < η < 1.77 (Area: 10 m²)
- Total material budget in acceptance is ~0.01 X/X0

AS-NCKU-Purdue Collaboration

○ Yi Yang (AS), Wen-Chen Chang (AS) & Po-Ju Lin (NCU):

design, simulation, testing, assembly(?), final production(?)

- Experiences with the AMS-02 UTTPS radiator and lead the project of the mechanical structure of STAR FST
- Excellent machine shop

O Andreas Jung (Purdue):

design, simulation, prototype, final production(?)

- Experienced in R&D for low mass support structures.
- Working on the light-weight composite tracker support structures for CMS

Yu-Tang Wang NCKU Ph.D. student)

From Purdue group

eP

Thermal Test Setup @ NCKU (300 mm) epic

NI 9213 DAQ

○ 16 channels

- O Accuracy:
 - High-resolution mode : <0.02 °C
 - High-speed mode : <0.25 °C

 \bigcirc Ceramic plate (5 Ω): ~500°C

Thermocouple (x 16) O Type E: -250°C ~ 900°C

Environmental chamber

- O Inner dimensions: $40 \times 50 \times 60 \text{ cm}^3$
- O Temperature: -40 $^{\circ}$ C ~ 100 $^{\circ}$ C (± 0.2 $^{\circ}$ C)
- Humidity: 10% ~ 98% (± 2.5%)

Flow meter

○ 20 – 300 cc/min

Cooling system

O Temperature: $3^{\circ}C \sim 32^{\circ}C$

Thermal Test Setup @ NCKU

Power vs current

8

10

12

Power(W)

Fixed Power @ 6W vs Flow Rate: Top epice

Fixed Power @ 6W vs Flow Rate: Bottom ePle

ΔT between Water-in and Water-out epice

17 / 21

ΔT between Water-in and Water-out e

ΔT between Water-in and Water-out

ері

\circ Half stave has larger ΔT

Summary and Next Steps

- O Prototypes of the supporting structure for ePIC Barrel TOF detector are designed and manufactured by the Purdue group (300 mm and 1070 mm)
- O AS/NCKU team worked on the thermal performance test.
- O Thermal performances are all expected that cooler cooling temperature and higher flow rate for the cooling water can take more heats and provide the uniform temperature distribution
- O The results provide confidence of making a long stave (~ 1.3 m) with similar technology
- O More configurations will be tested
- O Simulations are needed
- O Flatness vs temperature needs to be measured

Back up

