

Cheng Kai-Yu

Tatsuya Chujo, Yuji Goto, Motoi Inaba, Subaru Ito, Kentaro Kawade, Yongsun Kim, Wen-Chen Chang, Chia-Ming Kuo, Po-Ju Lin, Chih-Hsun Lin, Chia-Yu Hsieh, Rong-Shyang Lu, Jen-Chieh Peng, Yu-Siang Xiao, Shao-Yang Lu

Electron Ion Collider (EIC)

EIC

- High luminosity ep, eA collider
- Polarized target collider
- Wide center of mass energy range

ePIC

- The first experiment in EIC
- 27 sub-detectors

Topic

e+p DVCS, Sullivan process,

e+d exclusive J/ Ψ with p/n tagging, etc.

2

Forward Detectors of ePIC

Zero Degree Calorimeter (ZDC)

Structure

- 6X0 LYSO ECAL
- 75X0 Fe/Sc System

Target

Measuring forward neutrons and photons

	Energy Range	Energy Resolution	Position Resolution	
Neutron	~275GeV	$50\%/\sqrt{E}$	$3mrad/\sqrt{E}$	
Photon	100MeV~1G eV	20~30%		
	20~40GeV	$35\%/\sqrt{E}$	0.5~1mm	

Lutetium Yttrium Orthosilicate (LYSO)

- Higher light yield
 - Increase the energy resolution of low energy
- Lower temperature dependence
- Made by Taiwan Applied Crystal

Crystal	X _o (cm)	LY(#/MeV)	T dep.	Decay time(ns)	λ_{em}
PbWO ₄	0.89	200	-1.98% / °C	5(73%) 14(23%) 110(4%)	420nm
LYSO	1.14	30,000	-0.28% / °C	39	420nm
GAGG	1.59	40,000~ 60,000		50~150	520nm

One crystal : 7.12mm*7.12mm*88.3mm Array size : 56.96mm*59.96mm*88.3mm

Prototype LYSO ECAL

- LYSO
 - 8x8 array
 - Each crystal : 7.1mm*7.1mm*88.3mm (8X₀)
 - ESR reflection layer
- SiPM
 - Radiation tolerance
 - SiPM : 2x10¹⁴/cm² (CMS ECAL)
 - APD : 4x10¹³/cm² (CMS MTD BTL)
 - MICROFC-60035
- GTM Readout board
 - 2 Citiroc1A (2 x 32 channels)
 - Separate voltage adjustment
 - Self-triggered

Setup @ ELPH

First Beam Test

- Time
 - 2024 Feb. 15th to Feb. 21th
- Location
 - ELPH@Tohoku, Japan
- Participants
 - RIKEN, Tsukuba University, Tsukuba University of Technology, Sejong University, EIC-Taiwan
- Beam
 - 47.18 MeV to 823.36 MeV positron beam
- Scan list
- SiPM HV Scan, Beam energy scan, detector rotation, etc.

ADC function with E_{dep}

- The plot shows the saturation behavior of SiPM.
- Each data point represents the peak value of channels from the highest to lowest signals at different beam energies.
- Conversion of deposited energy references the results of MC simulations.
- Most of the data fall within the saturated range, except for the 47 MeV data.
- ~60% of the data from the 47 MeV beam remain in the linear range

Selection Criteria

Using linear fitting function to convert ADC values into deposited energy.

1) Fire two Citiroc

- Remove the events that only contains noise
- 2) $2.5 MeV < E_{dep} < 20 MeV$
 - Remove the low momentum photons
 - Focus on the linear region

Data and MC Comparison

- Clustering comparison at 47MeV Beam Energy
- Energy selection : [2.5MeV, 20MeV]
- E_{3x3} , E_{5x5} : energy sum for each channels in 3x3 or 5x5 region

Energy Resolution for 47MeV

- E5x5 distribution converted using a linear fitting function, without applying energy regression or calibration.
- Crystal ball fitting:
 - Mean = 31.446 ± 0.098 MeV
 - Sigma = 6.127 ± 0.077 MeV
- 19.5% energy resolution for 47MeV positron beam
- Including 11.6% beam momentum resolution.
- Removing beam uncertainty the resolution is ~15.6%

Nonlinear Reconstruct

- Using SiPM saturated function to obtain the nonlinear relationship between ADC values and deposited energies.
- SiPM saturated function¹:
- $ADC = \frac{(\beta+1)ADC_{LO}}{\beta + \epsilon LE_{dep}/ADC_{LO}}$
- $ADC_{LO} = N_{Pix} \left[(1 \alpha) ADC_{pix} \left(1 e^{-\frac{\epsilon LE_{dep}}{N_{pix}}} \right) + \alpha \epsilon LE_{dep} \right]$
- α represent contribute factor of remaining photons
- β represent decay factor of hit channels
- ε represent factor photon collection

¹Katsushige Kotera, <u>https://arxiv.org/abs/1510.01102v4</u>

Data and MC Comparison

- The offline energy cut are adjusted with different beam energies
- The distribution widths are similar in lower beam energy (<200MeV)

2nd Beam Test

- 2025 Feb. 17th to Feb. 20th at ELPH
- 2nd Prototype:
 - Radiation length $8X_0 \rightarrow 6X_0$
 - 64ch LYSO + APD
 - 36ch PbWO₄ + SiPM / APD
 - 2*Beam monitor (2mm scintillator bar arrays)
- Target
 - Test the performance of LYSO with APD
 - Compare with PbWO₄
 - Study the position resolution
 - Improve the event selection

Summary

16

Status of first ZDC prototype

- >90% data from higher energy beam falls within the saturated region.
- 60% data from 47MeV positron beam falls within the linear region.
- For the 47 MeV positron beam, our prototype achieves an energy resolution of 15.6% in linear region (E_{dep}< 20MeV)
- Using SiPM saturated function and removing the lower energy channels, the energy distribution between data and simulation are similar from 47 to 197MeV positron beam.

To do

- Applying energy regression to improve the result.
- Modify the higher energy beam simulation to improve analysis beam data.

• Secondary Beam Test in 2025

- Using APD to avoid nonlinear behavior caused by pixels of SiPM, and reducing the gain to increase dynamic range.
- Add beam monitor for studying position resolution and improve event selection.

Thank you for your attention!

Data and MC Comparison

) 19

MC Simulation:

- Including all detector geometry and material
- Beam condition follow the manual of ELPH
- Beam Energy : 47.18MeV ± 11.63% (gaussian)
- Gaussian beam profile
- Beam angle : 90°

Beam Profile

Shower Profile

Position Y(mm)

Energy Cut

- Comparison number of hit channels in data and simulation with different energy cut.
- We select the cut to ensure the number of hit channels is similar between the data and simulation.

Data and MC Comparison

24

2024/11/22

Energy Resolution for 47MeV

25

2024/11/22

Energy Resolution for 98MeV

Temperature Test with Na²²

The Peak values shows the ΔT between the Lab in Japan and Taiwan is about 2~3°C.

27

• The change of 5 degree gives around 25% change on gain.

Beam Profile in 2D

Shower Profile in 2D

29

0.00 00.0 00.0 00.0

-32.4 -25.2 -18 -10.8 -3.6

0.00 0.00

3.6

0.00

25.2 32.4

Position X(mm)

10.8 18

-25.2<mark>0.00 :</mark> 0.00 : 0.00 : 0.00 : 0.00 : 0.00 : 0.00 : 0.00 -32.4 -25.2 -18 -10.8 -3.6 2024/11

3.6 10.8

18

25.2 32.4

Position X(mm)

-32.4 -25.2 -18 -10.8 \$36-13.6 Ch081818A 25.2 32.4 Position X(mm)

0.00

0.00 0.00 0.00

0.00

0.00