/\/\ L P hys FiER SR (A) = s'léj'l tl:% EE ? O) %IJ ,ﬁ

Foundation of "Machine Learning Physics"

Self-learning Monte Carlo method with
equivariant transformer

The Information Technology Center,
The University of Tokyo

Yy Yuki Nagal

Yuki Nagai and Akio Tomiya, "Self-Learning Monte Carlo with Equivariant
Transformer”, J. Phys. Soc. Jpn. 93, 114007 (2024) Editors’ choice
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Introduction



About me

Born in Hokkaido, the northern island in Japan
2005/03 B. Eng. at Department of Applied Physics, Hokkaido University

2010/03 Ph.D at Department of Physics, the University of Tokyo

2010/04-2024/01 Scientist -> Senior Scientist, Japan Atomic Energy Agency
2024/02 Associate Professor in The University of Tokyo

Yuki Nagal

I have used supercomputers in JAEA

B ¢nd UTokyo
Condensed matter theory

2016/11°:

Visiting Scholar, Department of Physics, Superconduc’rlwfy,
Massachusetts Institute of Technology, USA Material science

2018-2023 Visiting researcher in RIKEN AIP Machine-learning and Physics
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Lattice QCD code for generic purpose

Open source LQCD code in Julia Language

% Akio Tomiya and YN

: ,

- Machines: Laptop/desktop/Jupyter/Supercomputers
ﬁ JuliaQCD ptop p/Jupyt p P

- - Functions: SU(Nc)-heatbath, (RIHMC, Self-learning HMC, SU(Nc) Stout
ﬁLattlcellCDdl Dynamical Staggered, Dynamical Wilson, Dynamical Domain-wall
Measurements

QCDMeasurements.jl
1. Download Julia binary
LatticeDiracOperators.jl 2. Add the package through Julia package manager

3. Execute!
Gaugefields.jl

Wilsonloop.ji CLIME_jI T e N
: = easy to run!

arXivi2409.03030 (Rl T i T
: s NI vatonl 3 Uulld [OOKS lIKe on
-> Next Dr. Akio Tomiyas falk s : P7
S g but fast like ¢ or fortran

|Polyakov loop|
© o o 9 ©



I\/Iachlne and Condensed Matter physicists
IN high-energy physics

=K

-~ Analytical calc.- & |
\ Numerical calc. , Physical observables

Lagrangian

Lagrangian _

------

. Physical observables

-
eatn ot &L

machine \_®w

Machine and condensed matter physicists calculate physical observables
without understanding any Lagrangian...?



Speedup with machine learning

In field of machine learning
Image recognition, Al chat etc.
We do not have a theory of these. But the machine can imitate these

A #> ﬁ> B :We do not have a theory

How to use machine learning in simulations?
Known heavy task Is replaced

v e A P

heavy task from a concrete theory effective model

We replace the heavy tasks by neural networks
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Self learning Monte Carlo



Self-learning Monte Carlo
We calculate a partition function Z= | exp(-S) or Zexp(-BH)

With the use of Monte Carlo method, we can calculate physical variables

Sometimes, the computational cost is heavy.

Configurations > Heavy tasks -  Boltzmann weight
Configurations » effective model -  Boltzmann weight
: At , -
Spins Electrons e Lattice QCD
molecules

To propose a new configuration, we use the effective model
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Exact MCMC simulations

You want to do MCMC simulations with very heavy computational cost
The effective model to imitate the original model might be useful

T " D

heavy effective model
if the effective model is not good, B’ is not good

How long do you have to train the model?

By using the self-learning Monte Carlo method,
the output with an effective model becomes exact



common simulation with machine learning:
Machine learning Simulation

Gathering data ﬁ> Training ﬁ> Evaluation

1\_/

not good? gather more data

Self-learning Monte Carlo method

Gathering datafl Training
We do three steps in same simulations

Num. of training data is drastically reduced (1/10)
because of efficient sampling
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Self-learning Monte Carlo

Spi : Atoms/molecules | Machine-learning MD
pln sys ems YN, M. Okumura, K. Kobayashi, and M. Shiga,

J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95, 041101 (R) (2017) “Self-learning Hybrid Monte Carlo: A First-principles Approach”,
| Phys. Rev. B 102, 041124(R) (2020)
H. Kohshiro and YN,,

K. Kobayashi, YN, M. ltakura, and M. Shiga,
“Effective Ruderman—Kittel-Kasuya—Yosida-like Interaction in Diluted “Self-leaS;ning hybrid Monte Carlo methodgfor isothermal—isobaric
Double-exchange Model: Self-learning Monte Carlo Approach”,

ensemble: Application to liquid silica”,
J. Phys. Soc. Jpn. 90, 034711 (2021) J. Chem. Phys. 155, 034106 (2021)

YN and A. Tomiya, “Self-learning Monte Carlo with YN, Yutaka lwasaki, Koichi Kitahara, Yoshiki Takagiwa, Kaoru Kimura,

equivariant Transformer”, J. Phys. Soc. Jpn. 93, 114007 Motoyuki Shiga, “High-Temperature Atomic Diffusion and Specific

(2024) Heat in Quasicrystals”, Phys. Rev. Lett. 132, 196301 (2024)

Fermion+classical spins Bo Thomsen, YN, Keita kobayashi, Ikutaro Hamada, and Motoyuki Shiga, “Self-learning

path integral hybrid Monte Carlo with mixed ab initio and machine learning potentials

EleCtrOnS for modeling nuclear quantum effects in water”, J. Chem. Phys. 161, 204109 (2024)

YN, H. Shen, Y. Qi, J. Liu,and L. Fu _ _ Lattice QCD su(N) Gauge theory on the lattice

“Self-learning Monte Carlo method: Continuous-time algorithm?”,

Physical Review B 96, 161102(R) (2017) Editors’ Suggestion YN, Akinori Tanaka, Akio Tomiya,

“Self-learning Monte-Carlo for non-abelian gauge theory with
dynamical fermions”,
Phys. Rev. D 107, 054501 (2023)

YN and Akio Tomiya,
Continuous time Quantum Monte Carlo “Gauge covariant neural network for 4 dimensional non-

abelian gauge theory”,
arXiv:2103.11965

YN, M. Okumura, A. Tanaka
“Self-learning Monte Carlo method with Behler-Parrinello neural networks”,
Phys. Rev. B 101, 115111 (2020)
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' Self-learning Monte Carlo 1

Self-learning Monte Carlo method (SLMC)
Self-learning Hybrid Monte Carlo method (SLHMC)

To speed up the Markov Chain Monte Carlo (MCMC) simulations

SLMC SLHMC
Markov chain with the probability W(C) Markov chain with the probability W(C)
Ci Cz Ca Cp ws N Gl Ol Ca™"Bai... CN
O O © © & > © M\ M\ M\ O 4
To propose Cg from Ca To propose Cg from Ca
v R v N\
Ca CagrGz Ca vl Ca Cs
Another Markov chain with the probability W'(C) Machine learning molecular dynamics

Machine learning techniques are used for proposing new configuration!
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Acceptance ratio for the Metropolis-Hastings algorithm

W(Cp) g(C4 CB)>
W(Cy) g(Cg | Cy)

g(CglCn):Proposal probability

Markov chain with the probability W(C)
Cl Cz CA CB b @

()

Wt s
To propose Cg from Ca |;I> A(C C ) i, s ( W(CB) W,(CA) )
73 \ e "W(Cy) W(Cp)

CA Cz C3 C4 oo
Another Markov chain with the probability W'(C) the acceptance ratio is one!

If the computational cost of the proposal Markov chain is small,
we can speed up the simulation

How to construct the Markov chain with W'(C)? ->Machine learning technique!
W(C) = exp(- BH(C)) -> W'(C) = exp(- B Hes(C)) We construct the effective Hamiltonian
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Acceptance ratio for the Metropolis-Hastings algorithm
Markov chain with the probability W(C) in Hybrid Monte Carlo
Cl CZ CA CB 000 CN A(C C ) — min 1 W(CB) if the MD is time-
o—o—0—0 O 4 i "W(Cy) reversal symmetric
To propose Cg from Ca MLMD conserves the energy of the effective model
/ \\ MLMD DOES NOT conserve the energy of the original model
Ca Ce

and » If the MD conserves the energy of the original model

Machine learning molecular dynamics (MLMD) the acceptance ratio is one!

If the computational cost of the MLMD is small,
we can speed up the simulation

In the field of atom and molecular systems, machine learning molecular dynamics was proposed in 2007
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Self-learning Monte Carlo

for lattice QCD

Markov chain with the probability W(C) YN, Akinori Tanaka, Akio Tomiya

“Self-learning Monte-Carlo for non-abelian gauge theory with dynamical fermions”,
Cl CZ CA CB Sy CN \ Phys. Rev. D 107, 054501 (2023)
>

o didcmr S[U] = 8,[U] + 5/[U],

To propose Cg from Ca

/ \ S:[U] = —log detM'M,

CA CZ C3 C4 CB integrated fermion action
g effective model without fermion actions

Another Markov chain with the probability W'(C
Prob g sszw]—z[ﬂmzz(l——w ) +ha 35 (1= 2R )

pu=1 v>p u=1 v#u
Nl_l N2_1
=1 u=2
Pol E tI'[H Ulnn4]—|—ﬂpol E tI'[H Uznn4]
n,,n3,ny nl—O ny,n3,ny n2—0

N3_1

+ B Y tr[H Us (7. n4>] + P D tr[H U7 "4>]  Peonst

ny,nyp,ny n3:O ni,ny,nj3 n4:0

N4_l




RRAFRHREBE T Y — ®

INFORMATION TECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Self-learning Monte Carlo

YN, Akinori Tanaka, Akio Tomiya, for lattice QCD

“Self-learning Monte-Carlo for non-abelian gauge theory with dynamical fermions”,
Phys. Rev. D 107, 054501 (2023)

effective model without fermion actions
S[U] = S,[U] + $,[U)

0. [U] = Z[ﬁplanZ(l ——trU,, ) +,BrethZ(1 ——trRW(n )]

u=1 v>pu

u=1 v#u
Nl_l

N,—1
SO | CICERIEVSS 9 | CACEN)

nj,n3,ny nl—O ni,n3,ny n2—0

S:[U] = —log detM'M,

integrated fermion action

N3_1 N4_1

S | I] U] + 4t 3 | [T U] + e

ny,ny,ny n3=0 ni,ny,nj3 n4=0

50 100
T (MC time)

sampling

p(U) ox e 5V = {Uz

We use a linear interpolation

'- >\/\/ 1> >l | how fo improve effective action?

the MINIimMuUmM e > 9
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Self-learning Hybrid Monte Carlo

for lattice QCD
Markov chain with the probability W(C) YN and Akio Tomiya,

“Gauge covariant neural network for 4 dimensional non-abelian gauge theory”,

Cl CZ CA CB o arXiv:2103.11965
® . target action

/ \ 5 gt = SglU| + Stlo, Usmu,

To propose Cg from Ca

/ \\ effective action

Ca o

UNN: trainable stout smearing

Smearing step
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Problems of SLMC

Configurations > Heavy tasks - Boltzmann weight

Y CENTER, THE UNIVER

Configurations » effective model »  Boltzmann weight

How to construct effective models?

Quality of the effective model is very important

In previous studies,

for example, a linear regression is used to construct the effective
model inspired by the physical insight

Use Transformer!!



Transformer and Attention mechanism



Generative Als

These AI have same architecture called Transformer

Transformer
Al Chat, Visualization, language franslation

protein foldings etc.

20
20

OQutput
Probabilities

Positional Positional
Encoding @ & & ‘v Encoding

Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.
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Scaling lows of Transformer

https://arxiv.org/abs/2001.08361

—— L=(D/5.4-1013)-0095 —— L=(N/8.81013)~0076

Test Loss

L = (Cpin/2.3 - 108)=0.050

107

Parameters
non-embedding

108 105

Dataset Size
tokens

105 10-3 10-! 10!

Compute
PF-days, non-embedding

2 .
1077 10°7

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute® used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

It requires huge data (e.

= weak inductive bias

. GPT uses all electric books in the world

large data makes prediction better
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Transformer and Attention

When we translate a sentence, we pay “attention” to words:

English: | am Yuki Nagal, who studies machine learning and physics

\ Kl

German: Ich bin Yuki Nagai, der Maschinenlernen und Physik studiert
translated by DeeplL
Non-local dependencies can be treated by “Attention layer”

What are most important relations in words”?

“Attention™ layer can capture these relations

In physics terminology, this is non local correlation.
The attention layer enables us to treat it with a neural net!
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Transformer and Attention

When we translate a sentence, we pay “attention” to words:

English: | am Yuki Nagai, who studies machine learning and physics

ey s

Chinese: j{jszy]d:HE%E [ 2T 1k 22 BSR4 18 translated by DeeplL

Non-local dependencies can be treated by “Attention layer”
What are most important relations in words”?

“Attention™ layer can capture these relations

In physics terminology, this is non local correlation.
The attention layer enables us to treat it with a neural net!
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What is the attention mechanism?

There are many websites to explain the transformer and attention
mechanism, in terms of language processing...

I try to explain the attention in terms of simple mathematics
This came from discussions with Dr. Tomiya

1. We consider a vector/matrix/tensor A Ai or Aij or Aijk

2. We make three variables K,Q,V from A
K = WKA, Q = WQA, V = WYA WkWQ WV:trainable parameters
3. We generate new vector/matrix/tensor B

B=A+ ) PV, P=o(QK")

; correlation between Q and K =i or ij or ijkK
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What is the attention mechanism?
K = WKA, Q = WQA, V = WVA WkWQ WV:trainable parameters

3. We generate new vector/matrix/tensor B

Bl = Al -+ Z Pl-lVl- P = U(QKT) 0 :nonlinear funciton

correlation between Q and K

weighted sum . .
self-attention mechanism

This Is most simplest architecture
In generative Als, they use the multi-head attention

Simple mechanism but very effective!

How can we use this in physics?
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Equivariant transformer

26
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Problem in transformers

If we have many parameters (one Billion??), we can have a good model

— L=(D/5.4-1013)"0095 . —— L =(N/8.8-1013)-0076

Test Loss
w - (&)} A N

L = (Cmin/2.3 - 108)~0.0%0
i0-* 107 10-° 10~* 10-' 10' 108 9 10° 107

Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute’ used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

If a model in physics have billion parameters, the computational cost might be huge
-> We can not accelerate MCMC simulations!

We want to use transformers , “
We want to reduce num. of parameters Lets use symmetry!!
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Fermion and spin model

We want to focus on a simple lattice model

fermions and Classical sSpiNs

f2 g Z (ehaE Sl S Z gt _”Z e .c:alled double exchange m?del
% IN condensed matter physics

Partition function:

2 —B(u—E,({S}))
= %1;(1 i ) Input: spin configurations {S;

Configurations: classical spins {Si} | e
Si: i-th three dimensional vector in spin space @ diagonalization

Output: Boltzmann weight

We want to replace the diagonalization
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Fermion and spin model

We want to focus on a simple lattice model

fermions and Classical sSpiNs

f2 g Z (& ép+h.c)+= Z gt _”Z e .c:alled double exchange m?del
# ia in condensed matter physics

RKKY Interaction

HRxky = — Z JoD s Sj
(1]

We can integrate out fermion degrees of freedom

fermion + spin -> spin
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Fermion and spin model

We want to focus on a simple lattice model

S EET /Y —
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fermions and Classical sSpiNs

e Z (& & +h.c)+= ZS ik _”Z AT A called double exchange model

i) Vo in condensed matter physics

We want to consider large J region

S|mp|e ef—fective mOdel J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95, 241104(R)(2017)
Jneff: n-th nearest neighbor interaction

H " Z JEIS S + E This is a linear model

< > by integrating out fermion degrees of freedom
L] )n

similar to RKKY model There are only few parameters Jeff
derived by physicist

Num. of parameters is too small! How to improve this model?
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Fermion and spin model

fermions and classical sSpins

H=—1 Z (€] &4 B+ = ZS a—ﬂZALAm,

a,(i,])

S EET /Y —
3 _—|—_.ﬂ|:|"r:|21 _/
| ECHNOLOGY CENTER, THE UNIVERSITY OF TOKYO

Slmple effective model J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95, 241104(R)(2017)
Jné'. n-th nearest neighbor interaction

HLlnear - Z ¥ B S+ K This is a linear model

(l ]> by integrating out fermion degrees of freedom
) I'n

There are only few parameters J,eff

Effective model with a transformer
Heff o 2 JSESFN : S}\IN i EO S?IN e ftransformer( {Sz})
(o)

We replace the spins with “translated” spin with a transformer
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Fermion and spin model

How fo construct model?
In physics, we know the renormalization group analysis

decimation ‘ renormalization le S P i n S b e CO m e 5 e‘FFe C 'I' i ve” s P i n s

—

a' Hpg=— ) JOSNN. SN 4 E,
(i),

Heisenberg model for effective spins

3a

block spin transformations

Charlie Duclut., "Nonequilibrium critical phenomena :exact Langevin equations,
erosion of tilted landscapes” Universitée Pierre et Marie Curie - Paris VI, 2017.

Spins are renormalized
Renormalized spin should have same symmeftries

If we can construct effective spins, we can construct effective model!
We need an equivariant model
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Invariance and equivariance

Hamiltonian has a symmetry  -sinvariant with the symmetry operation T

. H(S) = H(T[S]) symmetry invariant
S / We can consider two kinds of networks

1. make invariant input and put it into neural networks

S->C
— e — f(C) Conventional architecture can be used

T[S] -> C

2. make equivariant networks and make the output invariant

TlaB)] =9(T[S])  C=9(5) — H=1(C)

Equivariance

T[S]

This network can keep a symmetry



® ® @
Invariance and equivariance

2. make equivariant networks and make the output invariant

- A
g g(S) f f(g(S))
f(T[S]) = f(S)
TIS] : » ‘ ; . ® Invariance
g f f(g(T[S]))

g(T[S])
T[9(S)] = 9(T[S)) Outputs are same

Equivariance CNN uses equivariance
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Hovv tO construct the attention layer

1. We consider a vector/matrix/tensor A Ai or Aij or Aijk

IZ> We consider spin "matrix” [S] [Sl]ﬂ Si Is a classical spin

on i-th site (vector)
2. We make three variables K,Q,V from A
K = WKA, Q = WQA, V = WYA

IZ> We introduce “operators” §{Q _ Q<& <K — wKS SV — wVS

e A A
[WeS];, = Z WS, + e 7‘!_ + \ l
(i), AN

WkWQ WV:trainable parameters

WKWQWV do not depend on the site i (translational symmetry)
num. of parameters becomes a few




Yuki Nagai and Akio Tomiya, J. Phys. Soc. Jpn. 93, 114007 (2024) 36

HOW to construct the attention layer

3. We generate new vector/matrix/tensor B
B, = A, + Z PV
D> §O =y 4D 4 p8Vy 1SN, = BlI5]

= G(QKT) correlation between Q and K

3

|::> [M];; = ReLU LZS%S}; The “effective” spin SU can be
e B regarded as a physical spin
SO has spin-rotational equivariance -> renormalized spin

RI9(S)] = g(R[S]) We can build a model!
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Equivariant Transformer for spin systems

: K = WKS K,=) WS,
§'— Hy = t[SUSY 8, / z %
Self-Attention block S Q \

! S, = ReLUM)W"S Q X W S - i
(ZRLVOD \ %
ﬁ V = WVS W only mixes neighbor spins

t (short range interaction)

____Add&Norm & like block spin transformations
M = WQSSHWHK

: Rotational and translational invariant

S"= S + ReLU(M) WVS

Long range correlation is included
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Equivariant Transformer for spin systems

o N (S) =S;/ IS
S S, = (S + ReLUWM'(S))W"LS)
Self-Attention block Layer 2
S, = ReLUM)W"S S2 = (Sl -+ RGLU(M Z(Sl))szSl)
= s

M = WOS(WKS)T Laye r3

53 = N (S, + ReLUWM 3(52))WV3 S5)

dd & Norm
Last Heisenberg model with effective spins
i Z ZJZSBi°S3i + Ly
l [

If the second term is zero
Bi= Z Z Jl§i : §i+l + Ey, we get linearized model
l [
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2D double exchange model(fermion + classical spin)

Original

Original —e—
Linear —4—
3layer attention —&—

autocorrelation
OO 0000
SANNONPROOYD—-

0 500 10001500

magnetization Autocorrelation time is reduced
and staggered magnetization
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Transformers —o— o-th nearest neighbors
Linear —&—
K; = Z Widivi
[

Num. of parameters per layer

[+7+7 =21

Last layer: nearest neighbors
= Z Z J133i * 5314
ey

Num. of parameters is small

2 3 4 5

Num. of attention layers High acceptance ratio!
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arxiv: 2306.11527 R e S u I tS

o-th nearest neighbors
K; = Z WiSii
[

Num. of parameters per layer

[+7+7 =21

Scaling low?

estimated MSE

This is like the scaling lows in
Large Language Models

10"

. This is MC simulation
num. of trainable parameters

We generate data as we want
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Application to LatticeQCD

2. We make three variables K,Q,V from A
K = WKA, Q = WQA, V = WVA
We introduced “operators” §Q = WS l%I> Effective gauge field UQ is needed

3. We generate new vector/matrix/tensor B

B, =A; + Z Pl.lVi P = 6(QK") correlation between Q and K
l
We introduced inner product of spins I%I>Wha’r is “inner product” in gauge field?

-> Next Dr. Akio Tomiyas talk | <5
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Summary
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Summary

Yuki Nagai and Akio Tomiya, “Self-Learning Monte Carlo with Equivariant Transformer”, J. Phys. Soc.
Jpn. 93, 114007 (2024)

Equivariant Transformer in spin systems

I, — ’ T . . . . o
Y T Her =tlSUSYT S, Equivariant with respect to spin-rotational and
Add & Norm Self-Attention block

T S = RLUGDW'S translational symmetries

Self-Attention block

S M = WOSHES)T We found the scaling low!

Self-Attention block

Add & Norm WKS

We can improve models with increasing num.
of layers

Self-Attention block

“Transformer and Attention” is very useful!




