

with Pim de Haan, Roberto Bondesan & Miranda Cheng

Continuous flows for gauge theories [arxiv:2410.1316]

Mathis Gerdes — <u>m.gerdes@uva.nl</u> | Taipei 2024

Lattice gauge theory

Wilson action

Change of variables

Transforming probability densities

Normalizing flows

Learning f

 \mathcal{N}

We want to **learn** a trivializing map f.

To compute model probability:

- f must be bijective.
- Computing the det-Jacobian must be tractable.

$$p(y) = p\left(f^{-1}(y)\right) \cdot \left|\det\frac{\partial f}{\partial x}\right|^{-1}$$

Continuous normalizing flows

Sample
$$\phi^0 \sim \mathcal{N}$$

Final proposal $\phi^{t=1}$

Solve
$$\frac{d}{dt}\phi = g_{\theta}(\phi, t)$$

- ODE always invertible, architecture of $g_{ heta}$ unconstrained!
- ODE for $p(\phi^t)$ given by divergence:

$$\frac{d}{dt}\log p(\phi) = -\nabla \cdot \dot{\phi}$$

Symmetries And the need for equivariant flows

If action is invariant under transformation $S(\phi) = S(g \cdot \phi)$

then $p(\phi) = p(g \cdot \phi)$, should be proposed equally likely.

$$f_{\theta}(g \cdot \phi) = g \cdot f_{\theta}(\phi)$$

Gauge symmetry

Under gauge symmetry links transform as

$$U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x + \hat{\mu})$$

How can we define gauge equivariant transformations?

Continuous flows for gauge theories

Lie groups A brief reminder

We can parametrize the vector space at U via the Lie algebra:

$$V \in T_U G \qquad A := V U^{\dagger} \in \mathfrak{g} = T_e G$$

$$V = AU$$

Transporting A to vector space at U

Lie algebra is spanned by generators T^a In components, $V = A^a T^a U$

Challenges

Training gauge-neural ODEs

Solve ODE & gradients $\partial_{\theta} L_{KL}[U(T)]$

 $\frac{d}{dt}\log p(U) = -\partial_a Z^a$

Efficient divergence $\partial_a Z^a(U,t)$

Actually L[p(U(T))]

Crouch-Grossmann

Discretize integration

Real
$$x_{n+1} = x_n + h \sum_{i=1}^s b_i f(x_i^{(n)}, Y_i^{(n)})$$

$$Y_{n+1} = \exp\left(hb_s Z_s^{(n)}\right) \quad \cdots \quad \exp\left(hb_1 Z_1^{(n)}\right) Y_n$$

Matrix Lie group

Adjoint sensitivity method

Continuous flow ODE $\dot{z} = f_{\theta}(z, t)$

We have a loss function $L: M \rightarrow \mathbb{R}$, so $dL_z \in T^*_z M$

Adjoint state:
$$a(t) = \psi^*_{T,t} dL_{z(T)}$$
 .

In words: maps $\delta z(t)$ to δL .

"Compute gradients by backintegrating"

$$\frac{da(t)}{dt} = -a(t)\frac{\partial f_{\theta}(z,t)}{\partial z} \qquad \frac{dL}{d\theta} = -\int_{T}^{0} a(t)\frac{\partial f(z,t)}{\partial \theta} dt$$

Defining an ODE Continuous flows for SU(N)

In coordinates Z^a , general vector at U is: $V = (T^a Z^a) U$.

Path derivative
$$\partial_a f(U) = \frac{d}{ds} \bigg|_{s=0} f(e^{sT^a}U).$$

Then, the gradient is $\nabla f(U) = \partial_a f(U) T^a U$.

To define our flow, the network should output an algebra element:

$$\frac{d}{dt}U = \mathbf{Z}^a(U)T^aU$$

General implementation Thanks to JAX

- Test on single SU(N): targets $p(U) = p(V^{\dagger}UV)$.
- Define $Z^a = \partial_a \Phi_{\theta}(U, t)$ & use autograd.

Gauge symmetry

Object transformations

$$U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x+\hat{\mu})^{\dagger}$$

$$\begin{split} & \underline{\text{Wilson loop}} \\ & P_{12} = U_1(x)U_2(x+\hat{1})U_1(x+\hat{2})^{\dagger}U_2(x)^{\dagger} \\ & \text{are equivariant } P_{12} \mapsto \Omega(x)P_{12}\Omega(x)^{\dagger}. \end{split}$$

<u>Trace of Wilson loops</u> $W = \operatorname{tr} P_{12}$ are **invariant**.

<u>Gradients of invariants</u> e.g. $V = \nabla_U W$ are **equivariant** $V \mapsto \Omega(x) V \Omega(x)^{\dagger}$

Continuous flows for SU(N) Gradient flows

Define $Z^a = \partial^a S$ as the gradient of potential: sums and products of Wilson loops.

Can extend/do better by learning coefficients by gradient descent

Trivializing maps, the Wilson flow and the HMC algorithm

Martin Lüscher

Learning Trivializing Gradient Flows for Lattice Gauge Theories

Simone Bacchio,¹ Pan Kessel,^{2,3} Stefan Schaefer,⁴ and Lorenz Vaitl²

Can we define a more general ML architecture?

Network

Idea for construction

<u>Equivariant</u> vector field

"Basis" vectors: Built to be gauge <u>equivariant</u> Superposition function: Built out of <u>invariant</u> quantities

$$Z_e^a(U) =$$

$$\sum_{k,\bar{x}} \partial_{e,a} W^{(k)}_{\bar{x}}$$

•

$$S^k_{\bar{x}}(W^{(1)}, W^{(2)}, \ldots)$$

Network

Idea for construction

$$Z_{e}^{a}(U) = \sum_{k,\bar{x}} \quad \partial_{e,a} W_{\bar{x}}^{(k)} \cdot S_{\bar{x}}^{k}(W^{(1)}, W^{(2)}, \dots)$$

$$S_{\bar{x}}^{k} = \sum_{\bar{y},l} C_{\bar{x}\bar{y}}^{k,l} \operatorname{NN}_{\bar{y}}^{l}(\{W_{\bar{y}}^{(m)}\})$$

Local "stack" of Wilson loops

Non-linear *local* neural network (Equivariant) Convolution

Divergence computation

e,*a*

$$\partial_i Z^i = \hat{e}_i^{\dagger} (DZ) \hat{e}_i$$

 \longrightarrow scales with extra |E|.

Divergence computation

 $\sum \partial_{a,e} Z^a_e(U,t)$ *e*,*a*

 $= \sum \partial_{e,a}^{2} W_{\bar{x}}^{(k)} \cdot S_{\bar{x}}^{k}(\{W\}) + \partial_{e,a} W_{\bar{x}}^{(k)} \cdot \partial_{e,a} S_{\bar{x}}^{k}(\{W\})$ k,\bar{x}

$$\partial_e^a S_e^k = \sum_{l,x} C_{e,x}^{k,l} D(\mathrm{NN}_x^l)(\{\partial_e^a W_x^{(m)}\})$$

 \longrightarrow start with $\partial_{e,a}W$ and apply forward mode!

Divergence computation

$$Z_{e}^{a}(U) = \sum_{k,\bar{x}} \quad \partial_{e,a} W_{\bar{x}}^{(k)} \cdot S_{\bar{x}}^{k}(W^{(1)}, W^{(2)}, \ldots)$$

```
conv = algebra.Convolution(vec_count, kernel_size)
superpos = conv(trace_stack.no_first_grad(), t_emb)
potential = superpos @ trace_stack
# take first & second derivative
vect, div = potential.sum_all_appearances().vect_div_origin(lat_dim)
return vect, div
```

 \longrightarrow start with $\partial_{e,a}W$ and apply forward mode!

Results SU(2), SU(3)

In two dimensions

16×16

	SU(2)		SU(3)		
ESS [%]	$\beta = 2.2$	$\beta = 2.7$	eta=5	$\beta = 6$	$\beta = 8$
Continuous flow	87	68	86	76	23
Bacchio et al [13]	—	—	88	70	—
Boyda et al [8]	80	56	75	48	_

8×8

ESS [%]	eta=8	$\beta = 12$
Continuous flow	64	27
Multiscale + flow $[23]$	35	13
Haar + flow $[23]$	25	3
Haar + flow $[23]$	25	3

- Shallow ResNet activation.
- Transform from Haar measure.
- 2nd order integrator.
- Switch to 64bit after some training.
- Standard reverse KL loss.

Paths in distribution space

Identify β with flow time

Simplest theory-conditioned flow

Takeaways

- Integration & adjoint sensitivity for any $\mathbb{R} \times SU(N)$.
- Tractable divergence computation.
- Experiments confirm architecture improvements.
- Straight-forward temperature-conditioning.

Diffusion Models

Brownian motion SDE from images to noise: $d\phi = -\frac{1}{2}\beta\phi dt + \beta dw$

Solving the SDE starting at $p_0(\phi)$ leads to a path in distributions $p_t(\phi)$.

All information about the flow is encoded in the Stein score:

Want to learn $s_{\theta}(\phi, t) \approx -\nabla_{\phi} \log p_t(\phi) \longrightarrow \text{Know inverse SDE!}$

Controlled destruction (GUD)

Forward OU: $\phi(t) = \alpha_t \phi(0) + \sigma_t \epsilon$

2410.02667

