
Mathis Gerdes — m.gerdes@uva.nl | Taipei 2024

[arxiv:2410.1316]
Continuous flows for gauge theories

with Pim de Haan,
Roberto Bondesan &

Miranda Cheng

mailto:m.gerdes@uva.nl

Wilson action

Lattice gauge theory

W = tr(U1U2U†
3 U†

4)
Wilson loop trace

Wilson action S = − β
N ∑

x
Re [W(x)]

Want to sample U ∈ SU(N)|E|

U ∼ e−S[U]

Transforming probability densities

Change of variables

distribution space

sample space

f
x y

p(y) = p (f −1(y)) ⋅ det ∂f
∂x

−1

Source point

Change of density

Learning f
Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map . f

To compute model probability:

• must be bijective.

• Computing the det-Jacobian must be tractable.

f
p(y) = p (f −1(y)) ⋅ det ∂f

∂x

−1

Continuous normalizing flows

• ODE always invertible, architecture of unconstrained!

• ODE for given by divergence:

gθ

p(ϕt)

Sample ϕ0 ∼ 𝒩
Solve

d
dt

ϕ = gθ(ϕ, t)
Final proposal ϕt=1

d
dt

log p(ϕ) = − ∇ ⋅ ·ϕ

And the need for equivariant flows

Symmetries

etc.fθ(g ⋅ ϕ) = g ⋅ fθ(ϕ)

If action is invariant under transformation S(ϕ) = S(g ⋅ ϕ)

then , should be proposed equally likely.p(ϕ) = p(g ⋅ ϕ)

Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)

Under gauge symmetry links transform as

How can we define gauge equivariant transformations?

Continuous flows for
gauge theories

A brief reminder
Lie groups

V ∈ TUG

We can parametrize the vector space
at via the Lie algebra:U

A := VU† ∈ 𝔤 = TeG

V = AU

Transporting to
vector space at

A
U

Lie algebra is spanned by generators
In components,

Ta

V = AaTaU

Training gauge-neural ODEs

Challenges

Define
equivariant ·U = Zθ(U, t)U

Efficient
divergence
∂a Za(U, t)

Solve ODE
& gradients

∂θ LKL[U(T)]

Actually L[p(U(T))]
d
dt

log p(U) = − ∂aZa

Discretize integration

Crouch-Grossmann

z(0)

z(T)

Real

Matrix Lie group

Adjoint sensitivity method

Continuous flow
ODE ·z = fθ(z, t)

We have a loss function , so L : M → ℝ dLz ∈ T*z M

Adjoint state: .a(t) = ψ*T,t dLz(T)

In words: maps to .δz(t) δL

da(t)
dt

= − a(t) ∂fθ(z, t)
∂z

dL
dθ

= − ∫
0

T
a(t) ∂f(z, t)

∂θ
dt

“Compute gradients by back-
integrating”

To define our flow, the network should output an algebra element:

d
dt

U = Za(U) TaU

Continuous flows for SU(N)
Defining an ODE

In coordinates , general vector at is: .Za U V = (TaZa)U

Path derivative .∂a f(U) = d
ds s=0

f(esTaU)

Then, the gradient is .∇f(U) = ∂a f(U) TaU

Thanks to JAX

General implementation

• Integration & gradients for any
“real matrix” Lie group d.o.f.

• Test on single :
targets .

• Define
& use autograd.

×

SU(N)
p(U) = p(V†UV)

Za = ∂aΦθ(U, t)

Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)† Wilson loop
 P12 = U1(x)U2(x + 1̂)U1(x + 2̂)†U2(x)†

Trace of Wilson loops
 are invariant.W = tr P12

Gradients of invariants
e.g. are equivariant V = ∇UW
V ↦ Ω(x)VΩ(x)†

are equivariant .P12 ↦ Ω(x)P12Ω(x)†

Object transformations

Gradient flows

Continuous flows for SU(N)

Define as the gradient of potential:
sums and products of Wilson loops.

Za = ∂aS

Can extend/do better by learning
coefficients by gradient descent

Can we define a more
general ML architecture?

Idea for construction

Network

∂e,a W(k)
x̄

“Basis” vectors:
Built to be gauge
equivariant

Sk
x̄(W(1), W(2), …)

Superposition function:
Built out of invariant
quantities

∑
k,x̄

⋅Za
e (U) =

Equivariant
vector field

Idea for construction

Network

Sk
x̄ = ∑̄

y,l
Ck,l

x̄ȳ NNl
ȳ({W(m)

ȳ })

Non-linear local
neural network

(Equivariant)
Convolution

∂e,a W(k)
x̄ Sk

x̄(W(1), W(2), …)Za
e (U) = ∑

k,x̄
⋅

W(k)
x̄

Local “stack” of
Wilson loops

Divergence computation

∑
e,a

∂a,e Za
e (U, t)

JVP
forward-

mode

v ↦ Df ⋅ v

VJP
backward-

mode

w† ↦ w† ⋅ Df

∂i Zi = ̂e†
i (DZ) ̂ei scales with extra .⟶ |E |

Divergence computation

∑
e,a

∂a,e Za
e (U, t)

= ∑
k,x̄

∂2
e,aW(k)

x̄ ⋅ Sk
x̄({W}) + ∂e,aW(k)

x̄ ⋅ ∂e,aSk
x̄({W})

∂a
eSk

e = ∑
l,x

Ck,l
e,x D(NNl

x)({∂a
eW(m)

x })

 start with and apply forward mode!⟶ ∂e,aW

Divergence computation

∂e,a W(k)
x̄ Sk

x̄(W(1), W(2), …)Za
e (U) = ∑

k,x̄
⋅

 start with and apply forward mode!⟶ ∂e,aW

In two dimensions

Results SU(2), SU(3)

8 × 8

16 × 16 • Shallow ResNet activation.

• Transform from Haar
measure.

• 2nd order integrator.

• Switch to 64bit after some
training.

• Standard reverse KL loss.

Paths in distribution space

p0(x) pT(x)

Path in distributions

Flow on samples

drives
(Fokker-Planck
equation)

Simplest theory-conditioned flow
Identify with flow timeβ

Za = ∂aΦθ(U, t)

Takeaways

• Integration & adjoint sensitivity for any .

• Tractable divergence computation.

• Experiments confirm architecture improvements.

• Straight-forward temperature-conditioning.

ℝ × SU(N)

Diffusion Models

Solving the SDE starting at  
leads to a path in distributions .

p0(ϕ)
pt(ϕ)

All information about the flow is encoded in the Stein score:
Want to learn sθ(ϕ, t) ≈ − ∇ϕ log pt(ϕ)

Brownian motion SDE from images to noise: dϕ = − 1
2 β ϕ dt + β dw

Know inverse SDE!

t

Controlled destruction (GUD)

Forward OU:
ϕ(t) = αtϕ(0) + σtϵ

2410.02667

