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Wilson action

Lattice gauge theory

W = tr(U1U2U†
3 U†

4 )
Wilson loop trace

Wilson action S = − β
N ∑

x
Re [W(x)]

Want to sample U ∈ SU(N)|E|

U ∼ e−S[U]



Transforming probability densities

Change of variables

distribution space

sample space

f
x y

p(y) = p (f −1(y)) ⋅ det ∂f
∂x

−1

Source point

Change of density



Learning   f
Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map  . f

To compute model probability: 

•    must be bijective. 

•  Computing the det-Jacobian must be tractable.

f
p(y) = p (f −1(y)) ⋅ det ∂f

∂x

−1



Continuous normalizing flows

• ODE always invertible, architecture of  unconstrained! 

• ODE for  given by divergence: 

gθ

p(ϕt)

Sample ϕ0 ∼ 𝒩
Solve  

d
dt

ϕ = gθ(ϕ, t)
Final proposal ϕt=1

d
dt

log p(ϕ) = − ∇ ⋅ ·ϕ



And the need for equivariant flows

Symmetries

etc.fθ(g ⋅ ϕ) = g ⋅ fθ(ϕ)

If action is invariant under transformation S(ϕ) = S(g ⋅ ϕ)

then , should be proposed equally likely.p(ϕ) = p(g ⋅ ϕ)



Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)

Under gauge symmetry links transform as

How can we define gauge equivariant transformations?



Continuous flows for 
gauge theories



A brief reminder
Lie groups

V ∈ TUG

We can parametrize the vector space 
at  via the Lie algebra:U

A := VU† ∈ 𝔤 = TeG

V = AU

Transporting  to 
vector space at 

A
U

Lie algebra is spanned by generators  
In components, 

Ta

V = AaTaU



Training gauge-neural ODEs

Challenges

Define 
equivariant ·U = Zθ(U, t)U

Efficient 
divergence 
∂a Za(U, t)

Solve ODE 
& gradients 

∂θ LKL[U(T)]

Actually L[p(U(T ))]
d
dt

log p(U) = − ∂aZa



Discretize integration

Crouch-Grossmann

z(0)

z(T )

Real

Matrix Lie group



Adjoint sensitivity method

Continuous flow 
ODE ·z = fθ(z, t)

We have a loss function , so L : M → ℝ dLz ∈ T*z M

Adjoint state:  .a(t) = ψ*T,t dLz(T)

In words: maps  to .δz(t) δL

da(t)
dt

= − a(t) ∂fθ(z, t)
∂z

dL
dθ

= − ∫
0

T
a(t) ∂f(z, t)

∂θ
dt

“Compute gradients by back-
integrating”



To define our flow, the network should output an algebra element:

d
dt

U = Za(U) TaU

Continuous flows for SU(N)
Defining an ODE

In coordinates , general vector at  is: .Za U V = (TaZa)U

Path derivative  .∂a f(U) = d
ds s=0

f(esTaU)

Then, the gradient is .∇f(U) = ∂a f(U) TaU



Thanks to JAX

General implementation

• Integration & gradients for any 
“real  matrix” Lie group d.o.f. 

• Test on single :   
targets . 

• Define    
&  use autograd.

×

SU(N)
p(U) = p(V†UV )

Za = ∂aΦθ(U, t)



Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)† Wilson loop 
 P12 = U1(x)U2(x + 1̂)U1(x + 2̂)†U2(x)†

Trace of Wilson loops 
 are invariant.W = tr P12

Gradients of invariants 
e.g.  are equivariant V = ∇UW
V ↦ Ω(x)VΩ(x)†

are equivariant  .P12 ↦ Ω(x)P12Ω(x)†

Object transformations



Gradient flows

Continuous flows for SU(N)

Define  as the gradient of potential: 
sums  and products of Wilson loops.

Za = ∂aS

Can extend/do better by learning 
coefficients by gradient descent



Can we define a more 
general ML architecture?



Idea for construction

Network

∂e,a W(k)
x̄

“Basis” vectors: 
Built to be gauge 
equivariant

Sk
x̄(W(1), W(2), …)

Superposition function: 
Built out of invariant 
quantities

∑
k,x̄

⋅Za
e (U) =

Equivariant 
vector field



Idea for construction

Network

Sk
x̄ = ∑̄

y,l
Ck,l

x̄ȳ NNl
ȳ({W(m)

ȳ })

Non-linear local 
neural network

(Equivariant) 
Convolution

∂e,a W(k)
x̄ Sk

x̄(W(1), W(2), …)Za
e (U) = ∑

k,x̄
⋅

W(k)
x̄

Local “stack” of 
Wilson loops



Divergence computation

∑
e,a

∂a,e Za
e (U, t)

JVP 
forward-

mode

v ↦ Df ⋅ v

VJP 
backward-

mode

w† ↦ w† ⋅ Df

∂i Zi = ̂e†
i (DZ) ̂ei   scales with extra .⟶ |E |



Divergence computation

∑
e,a

∂a,e Za
e (U, t)

= ∑
k,x̄

∂2
e,aW(k)

x̄ ⋅ Sk
x̄({W}) + ∂e,aW(k)

x̄ ⋅ ∂e,aSk
x̄({W})

∂a
eSk

e = ∑
l,x

Ck,l
e,x D(NNl

x)({∂a
eW(m)

x })

  start with  and apply forward mode!⟶ ∂e,aW



Divergence computation

∂e,a W(k)
x̄ Sk

x̄(W(1), W(2), …)Za
e (U) = ∑

k,x̄
⋅

  start with  and apply forward mode!⟶ ∂e,aW



In two dimensions

Results SU(2), SU(3)

8 × 8

16 × 16 • Shallow ResNet activation. 

• Transform from Haar 
measure. 

• 2nd order integrator. 

• Switch to 64bit after some 
training. 

• Standard reverse KL loss.



Paths in distribution space

p0(x) pT(x)

Path in distributions

Flow on samples

drives 
(Fokker-Planck 
equation)



Simplest theory-conditioned flow
Identify  with flow timeβ

Za = ∂aΦθ(U, t)



Takeaways

• Integration & adjoint sensitivity for any . 

• Tractable divergence computation. 

• Experiments confirm architecture improvements. 

• Straight-forward temperature-conditioning.

ℝ × SU(N)



Diffusion Models

Solving the SDE starting at   
leads to a path in distributions .

p0(ϕ)
pt(ϕ)

All information about the flow is encoded in the Stein score:
Want to learn  sθ(ϕ, t) ≈ − ∇ϕ log pt(ϕ)

Brownian motion SDE from images to noise:   dϕ = − 1
2 β ϕ dt + β dw

Know inverse SDE!

t



Controlled destruction (GUD)

Forward OU: 
ϕ(t) = αtϕ(0) + σtϵ
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