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Diffusion models

stochastic dynamics to generate images (configurations)
o  start with data set of images
 
o  make the images more blurred by applying noise (forward process)

o  learn steps in this process
     … and then revert it

o  create new images from noise
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Prior and target distributions

o   in pictures: 𝑝! is target (non-trivial), 𝑝" is the prior (easy)
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Outline

o   some comments on diffusion models and stochastic quantisation

o   first application in lattice scalar field theory in two dimensions

o   correlations: higher 𝑛-point functions and interactions in field theory

o   detailed analysis of forward and backward process, cumulants, generating functionals

o   application to complex action problem: complex Langevin dynamics

o   summary and outlook
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Diffusion models and stochastic quantisation

o   images/configurations are generated during backward process 

o   stochastic process with time-dependent drift and noise strength

o   write   such that

o   then 
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Diffusion models and stochastic quantisation

o   then

o   very familiar to (lattice) field theorists

o   stochastic quantisation (Parisi & Wu 1980)

o   path integral quantisation via a 
      stochastic process in fictitious time

o  stationary solution of associated Fokker-Planck equation
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Diffusion models and stochastic quantisation
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similarities and differences:

ü  SQ: fixed drift, determined from known action
     constant noise variance (but can be generalised using kernels)
     thermalisation followed by long-term evolution in equilibrium

ü  DM: drift and noise variance time-dependent, learn from data 
     evolution between            , many short runs



Diffusion models and stochastic quantisation

o   diffusion models as an alternative approach to stochastic quantisation

configurations

theory: 𝑝 𝜙 	~	𝑒#$!  

e.g. HMC

configurations
stochastic quantisation

diffusion model, forward process

diffusion model, 
backward process
“denoising”

random 
configurations
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Diffusion model for 2d 𝜙! scalar theory

o   32% lattice, choice of action parameters in symmetric and broken phase
o   training data set generated using Hybrid Monte Carlo (HMC)

o   variance expanding DM trained using 
      U-Net architecture

generating configurations:
o   broken phase
o   “denoising” (backward process) 
o   large-scale clusters emerge, as expected

τ = 0 τ = 0.25 τ = 0.5 τ = 0.75 τ = 1
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Diffusion models

ok, so it seems to work: many questions

o   correlations: how are they destroyed and rebuilt?
o   often stated data at the end of forward process is decorrelated (normal distribution)
o   higher 𝑛-point functions contain interactions in field theory
o   essential for applications in field theory, correlations = interactions
o   focus on moments and cumulants
o   various schemes/implementations available: (dis)advantages? 

discuss forward and backward process in more detail
10
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Diffusion models

o   forward process:

o   backward process:

two main schemes:

o   variance-expanding (VE): no drift
o   variance-preserving (VP) or denoising diffusion probabilistic models (DDPMs):
              linear drift  
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noise profile



Diffusion models: forward process

o   forward process:

o   linear (or zero) drift: 

o   initial data from target ensemble

o   solution:

o   with
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noise profile



Diffusion models: forward process

o   solution:

o   moments    and cumulants or connected 𝑛-point functions

o   second moment/cumulant:      (assume: first moment vanishes:   )
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Diffusion models: forward process

o   solution:

o   higher-order moment and cumulants:
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variance-expanding 
scheme: no drift

higher cumulants 
conserved!



Diffusion models: forward process

o   higher-order cumulants:

o   in variance-expanding scheme (             , no drift): distribution at end of forward process 
      as correlated as target distribution 

o   proof to all orders: generating functionals

o   average over both 
     noise and target 
     distribution
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Diffusion models: generating functionals

o   noise average:

o   total average:

o   cumulants:

o  2nd cumulant:

o   higher-order 
     cumulants:

16

ü  

ü  



Diffusion models: generating functionals

o   exact expression for cumulant-generating function 
      (for any linear or vanishing drift and noise strength)

o   particularly interested in higher-order cumulants

o   apply/test in simple model and lattice field theory
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Toy model: two-peak distribution 

o   sum of two Gaussians:

o   moment-generating function:

o   cumulant-generating function:

o   only second cumulant depends on 𝜎!% : 
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2nd cumulant without drift

o   variance-expanding scheme
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4th, 6th, 8th  cumulant without drift

20

0.0 0.2 0.4 0.6 0.8 1.0

t

°5

°4

°3

°2

°1

0

∑
4
/∑

ex
ac

t
4

°
1

100K

1M

10M

0.0 0.2 0.4 0.6 0.8 1.0

t

°40

°20

0

20

40

60

∑
6
/∑

ex
ac

t
6

°
1

100K

1M

10M

0.0 0.2 0.4 0.6 0.8 1.0

t

0

200

400

∑
8
/∑

ex
ac

t
8

°
1

100K

1M

10M

0.0 0.2 0.4 0.6 0.8 1.0

ø

°1.0

°0.5

0.0

0.5

∑
4
/∑

ex
ac

t
4

°
1

0.6 0.8 1.0

°0.05

0.00

0.0 0.2 0.4 0.6 0.8 1.0

ø

°15

°10

°5

0

5

∑
6
/∑

ex
ac

t
6

°
1

0.6 0.8 1.0

°0.05

0.00

0.0 0.2 0.4 0.6 0.8 1.0

ø

0

50

100

150

200

250

300

∑
8
/∑

ex
ac

t
8

°
1

0.6 0.8 1.0

°0.05

0.00

fo
rw

ar
d

ba
ck

w
ar

d



2nd, 4th, 6th, 8th  cumulant without drift

o   2nd cumulant increases as expected: variance expanding

o   higher-order cumulants are conserved, up to numerical cancellations:
      cumulants require cancellations between moments which increase in time

o   initial conditions for backward process taken from normal distribution: 
      higher-order cumulants initially vanish, up to numerical cancellations

o   score has higher-order cumulants encoded: cumulants are reconstructed



2nd, 4th, 6th, 8th  cumulant without drift

o   score has higher-order cumulants encoded: cumulants are reconstructed
o   how do we know this (besides numerical evidence)?
o   time-dependent distribution and score can be given analytically:

o   with

o   score:

o   encodes all information about higher-order cumulants (solve process with this score     )ü  



DDPM: with drift

o   include a linear drift

o   choice of coefficient

o    simple FPE

o   redefine time

o   simplest FPE



2nd cumulant with drift (DDPM)

o   variance-preserving scheme
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4th, 6th, 8th  cumulant with drift (DDPM)
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2nd, 4th, 6th, 8th cumulant with drift (DDPM)

o   2nd cumulant goes to 1: variance preserving (but noisy!)

o   higher-order cumulants go to zero à distribution becomes normal indeed
  no numerical cancellations required

o   initial conditions for backward process taken from normal distribution

o   cumulants interpolate smoothly 

o   score has higher-order cumulants encoded: cumulants are reconstructed



2nd, 4th, 6th, 8th  cumulant with drift (DDPM)

o  time-dependent distribution and score can be given analytically:

o   with

o   encodes all information about 
      higher-order cumulants 
      (solve process with this score     )ü  



Comparison between schemes

expectation values at the end of the backward process

ü variance-expanding scheme slightly outperforms variance-preserving



Two-dimensional scalar fields

extension to scalar fields trivial: each lattice point is treated separately

o   forward:
o   backward:

o  two-point function:

o   moments:



Generating functionals

o   moment generating:

o   cumulant generating:

o   higher-order cumulants:

full path integral 
with sources

variance
preserving
𝑓 𝑡, 0 → 0

variance 
expanding
𝑓 𝑡, 0 = 1



2nd, 4th, 6th cumulant without drift
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Comparison

expectation values at the end of the backward process

excellent agreement

𝜙&: 32%, 𝜅 = 0.4, 𝜆 = 0.022, 10( configurations



Summary of part I

o dynamics in diffusion models described in terms of generating functionals

o clarifies evolution of cumulants

o quite general description for linear or vanishing drift

o interpolate between variance-expanding and variance-preserving scheme (not shown)



Complex actions and diffusion models 

Diaa Habibi, GA, Lingxiao Wang, Kai Zhou

Lattice 2024 2412.01919 [hep-lat] and in preparation

https://arxiv.org/abs/2412.01919


Stochastic quantisation: complex actions

o   stochastic quantisation not limited to real-valued distributions/actions
o   extend Langevin process to complex manifold: complex Langevin dynamics (Parisi 1981)

o   convergence not guaranteed, no general solution of Fokker-Planck equation
o   a posteriori justification (GA, Seiler, Stamatescu 2009, Nagata, Nishimura, Shimasaki 2016)
o   recent applications in QCD (Sexty et al, 2023, 2024)
o   introductory lectures (GA, 1512.05145 [hep-lat])
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(Complex) Langevin dynamics

o   observables:

o   Langevin equation and drift:

o   Fokker-Planck equation (FPE):

o   what if weight is complex? drift is complex, FPE only formal

o   complexify degrees of freedom:

36



Complex Langevin dynamics

o   complexify degrees of freedom:
o   Langevin equation and drift:

o   take real and imaginary part:

 
o  FPE:

o   observables:
37

𝑃(𝑥, 𝑦; 𝑡) ≥ 0



Complex Langevin dynamics

o   FPE:

o   cannot be solved, non-integrable:

o   formal justification:

o   relation (cannot be verified in practice):

o   instead, a posteriori criteria for correctness

GA, E Seiler, IO Stamatescu, Phys. Rev. D 81 (2010) 054508 [0912.3360]
GA, F James, E Seiler, IO Stamatescu, Eur. Phys. J. C 71 (2011) 1756 [1101.3270] 



Complex Langevin distributions

o   FPE:

o   want to describe/understand this distribution:
o further sampling
o criteria for correctness
o (modify process)

o   use diffusion model, learn from CL generated data
o   diffusion model does not care what the origin of the data is

o   aside: exact distribution is not known, corrective accept/reject step not possible

real noise:

𝑃(𝑥, 𝑦; 𝑡) ≥ 0



Gaussian model (solvable)

o   complex quadratic action:

o   CL equations:

o   here FPE can be solved:

o   with coefficients:

o   solution satisfies:

o   note: score ≠ CL drift



Flow from CL and from score: Gaussian model 
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𝐾) = −𝐴𝑥 + 𝐵𝑦
𝐾* = −𝐴𝑦 − 𝐵𝑥

𝜕)𝐾* ≠ 𝜕*𝐾)

CL dynamics: score:
𝜕)log	𝑃 𝑥, 𝑦 = −2𝛼	𝑥 − 2𝛾	𝑦
𝜕*log	𝑃 𝑥, 𝑦 = −2𝛽	𝑥 − 2𝛾	𝑥

𝜕*𝜕)log	𝑃 𝑥, 𝑦 = 𝜕)𝜕*log	𝑃 𝑥, 𝑦

𝐴 = 𝐵 = 1



Trained diffusion model: Gaussian case
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Quartic model

o   simple model with quartic coupling

o   detailed analysis in GA, Giudice, Seiler, Annals Phys. 337 (2013) 238 [1306.3075]

o   CL converges, provided 3𝐴% − 𝐵% > 0, dynamics is contained inside a strip, −𝑦# < 𝑦 < 𝑦#

o   this follows from CL drift

o   FPE can be solved (approximately) using double expansion in Hermite polynomials

o   train diffusion model on CL generated data 
43



Quartic model
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solution of FPE using double expansion in Hermite 
polynomials

GA, Giudice, Seiler, Annals Phys. 337 (2013) 238 [1306.3075]

solution obtained by sampling 
from trained diffusion model
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𝑦# ≈ 0.3029
𝐴 = 𝐵 = 𝜆 = 1



Trained diffusion model: quartic model
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complex Langevin drift score from trained diffusion model
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Comparison

cumulants in the quartic model

expectation values at the end of the backward process

note: diffusion model learns from CL data, not the “exact” value



Trained diffusion model: quartic model
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complex Langevin:
o non-integrable drift
o noise in real direction
o attractor at origin

diffusion model:
o integrable score
o noise in both directions
o saddle at origin

different Fokker-Planck equations

yet same distributions are created for data generation



Summary and outlook

o   diffusion models offer a new approach for ensemble generation to explore in LFT
o   learn from data: requires high-quality ensembles
o   close relation to stochastic quantisation
o   moment- and cumulant-generating functionals: 
  higher 𝑛-point functions important in LFT applications

o  apply to complex actions/complex Langevin: DMs learn elusive real-valued distributions
o  apply to theories with fermions: DMs learn presence of fermions implicitly?
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