Applications of flow models to the generation of correlated lattice QCD ensembles

Fernando Romero-López

fernando.romero-lopez@unibe.ch

Lattice Field Theory and Machine Learning NTU, Taipei…virtually :(

December 6th

Massachusetts Institute of Technology

***** Fermilab

• Phiala Shanahan

• Ryan Abbot • Julian Urban • Denis Boyda

• Michael Albergo

• Sébastien Racanière • Danilo Rezende

• Kyle Cranmer

-
- Aleksandar Botev Alex Matthews Ali Razavi

• Fernando Romero-Lopez

BERN

1. Introduction 2. Flows for correlated ensembles 3. Numerical demonstrations 4. Hadron structure in dynamical QCD 5. Bonus: Transformed Replica Exchange (T-REX) 6. Conclusion

Lattice Field Theory is a numerical first-principles treatment of the generic QFT

-
- **• Significant progress in computing QCD observables at hadronic energies.**

Lattice Field Theory is a numerical first-principles treatment of the generic QFT \bullet

Lattice QCD can be formulated as a sampling problem:

• Path integral in Euclidean or imaginary time: statistical meaning $=$ $\int D\phi \ e^{-S_E(\phi)}$, where $S_E(\phi) = \int d^4x \ \mathscr{L}_E(\phi)$
Euclidean action **, where**

-
- **• Significant progress in computing QCD observables at hadronic energies.**
	-
	-

Increasing interest in applying generative flow models to LQCD \bullet

Lattice Field Theory is a numerical first-principles treatment of the generic QFT \bullet

• Can flow models reduce computational costs?

Lattice QCD can be formulated as a sampling problem:

• Path integral in Euclidean or imaginary time: statistical meaning $=$ $\int D\phi \ e^{-S_E(\phi)}$, where $S_E(\phi) = \int d^4x \ \mathscr{L}_E(\phi)$
Euclidean action **, where**

-
- **• Significant progress in computing QCD observables at hadronic energies.**
	-
	- -
	-
	-

Topological charge

Computational cost of generating independent samples "explodes" towards the continuum limit: Critical Slowing Down

6 / 35

6 / 35

Topological charge

Computational cost of generating independent samples "explodes" towards the continuum limit: Critical Slowing Down

Can flows help?

The need for a continuum limit

HVP of muon magnetic moment

Binding energy of H dibaryon

(1+1)d real scalar field theory [\[Albergo, Kanwar, Shanahan 1904.12072\]](https://arxiv.org/pdf/1904.12072.pdf) [\[Hackett, Hsieh, Albergo, Boyda, JW Chen, KF Chen, Cranmer, Kanwar, Shananan 2107.00734\]](https://arxiv.org/abs/2107.00734) (1+1)d Abelian gauge theory [\[Kanwar, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan 2003.06413\]](https://arxiv.org/pdf/2003.06413.pdf) (1+1)d non-Abelian gauge theory [\[Kanwar, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan 2003.06413\]](https://arxiv.org/abs/2003.06413) (1+1)d Yukawa model i.e. real scalar field theory + fermions [\[Albergo, Kanwar, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934\]](https://arxiv.org/abs/2106.05934) Schwinger model i.e. (1+1)d QED [\[Albergo, Boyda, Cranmer, Hackett, Kanwar, Racanière, Rezende, FRL, Shanahan, Urban 2202.11712\]](https://arxiv.org/abs/2202.11712) 2D fermionic gauge theories with pseudofermions [\[Abbott, Albergo, Boyda, Cranmer, Hackett, Kanwar, Racanière, Rezende, FRL, Shanahan, Tian, Urban 2207.08945\]](https://arxiv.org/abs/2207.08945) QCD/SU(3) in the strong-coupling region [\[Abbott et al, 2208.03832\]](https://arxiv.org/abs/2208.03832) [\[Abbott et al, 2305.02402\]](https://arxiv.org/abs/2305.02402)

…

Still some developments are needed for at-scale QCD

(in our collaboration)

8 / 35

Already dealing with 4D gauge theories. \bullet

- **Direct sampling remains hard** P
- **Need very high-quality models to reach large volumes** P **(Naive volume scaling is exponential)**

9 / 35

Already dealing with 4D gauge theories. \bullet

Instead, explore applications with smaller gap between theories: \bullet

Can be useful for observable evaluation (and potentially sampling)

- **Direct sampling remains hard** P
- **Need very high-quality models to reach large volumes** P **(Naive volume scaling is exponential)**

Applications of flow models to the generation of correlated lattice QCD ensembles

Ryan Abbott,^{1,2} Aleksandar Botev,³ Denis Boyda,^{1,2} Daniel C. Hackett,^{4,1,2} Gurtej Kanwar,⁵ Sébastien Racanière,³ Danilo J. Rezende,³ Fernando Romero-López,^{1,2} Phiala E. Shanahan,^{1,2} and Julian M. Urban^{1,2}

10 /35

[arXiv:2401.10874]

approximates target distribution (model)

$$
\text{Model probability} \begin{aligned} & \rho \text{robability} \\ q(\phi) = r(z) \left| \det \frac{\partial f(z)}{\partial z} \right|^{-1} \end{aligned}
$$

tractable Jacobian & invertible

[Rezende, Mohamed, 1505.05770]

"Trainable change of variables"

11/35

parametrized by neural networks

easy-to-sample

distribution (prior)

distribution (prior)

12/35

approximates target distribution (model)

 Theories are "closer" and current flow models are able to effectively bridge between them $\text{ESS} \simeq x^{\Delta \beta}$

Non-trivial prior sampled via MCMC

In lattice QCD there are many examples where derivatives with respect to action parameters are useful

\bullet

Derivative observables

In lattice QCD there are many examples where derivatives with respect to action parameters are useful

- P **Continuum limit, e.g., constraining the slope of a continuum extrapolation**
- **Matrix element using Feynman-Hellmann techniques: sigma terms, hadron structure.** P
- **QCD + QED, e.g., derivative with respect to electromagnetic coupling**
- **Derivatives with respect to chemical potential, theta term… (caveat: sign problem)**

1.Independent ensembles:

Example $\langle \mathcal{O} \rangle_{\alpha_i}$ **on independent Markov Chains.**

 \bullet

1.Independent ensembles: Example $\langle \mathcal{O} \rangle_{\alpha_i}$ **on independent Markov Chains.**

$$
\rangle_{\alpha_1} \qquad \qquad w_{\epsilon} = p_{\alpha_1+ \epsilon}/p_{\alpha_1}
$$

2.Epsilon-reweighting

Compute difference on a single ensemble using reweighing at $\Delta \alpha = \epsilon$ P $\langle \mathcal{O} \rangle_{\alpha_1} - \langle \mathcal{O} \rangle_{\alpha_1 + \epsilon} = \langle \mathcal{O} - w_\epsilon \mathcal{O} \rangle$

 \bullet

1.Independent ensembles: Example $\langle O \rangle_{\alpha_i}$ **on independent Markov Chains.**

$$
\rangle_{\alpha_1} \qquad \qquad w_{\epsilon} = p_{\alpha_1 + \epsilon}/p_{\alpha_1}
$$

Compute difference on a single ensemble using reweighing at $\Delta \alpha = \epsilon$ P $\langle \mathcal{O} \rangle_{\alpha_1} - \langle \mathcal{O} \rangle_{\alpha_1 + \epsilon} = \langle \mathcal{O} - w_\epsilon \mathcal{O} \rangle$ **3.Using Flows**

 $\langle {\cal O}(U)-w(f(U)){\cal O}(f(U))\rangle_{\alpha_1}$ where $w=p/q$ [see also S. Bacchio, 2305.07932]

2.Epsilon-reweighting

Create a "correlated ensemble" using a flow and compute the difference

 $w(f(U))\simeq 1$

14/35

O How to compute derivative observables?

1.Independent ensembles: $\langle \mathcal{O} \rangle_{\alpha_1} - \langle \mathcal{O} \rangle_{\alpha_2}$

/35 **Fernando Romero-López, Uni Bern**

Commutative observables:
$$
\frac{d\langle O \rangle}{d\alpha} \simeq \frac{\langle O \rangle_{\alpha_1} - \langle O \rangle_{\alpha_2}}{\Delta \alpha} \xrightarrow{\text{action}
$$
 and
$$
\frac{d\langle O \rangle}{d\alpha} \simeq \frac{\langle O \rangle_{\alpha_1} - \langle O \rangle_{\alpha_2}}{\Delta \alpha} \xrightarrow{\text{action}}
$$

$$
\rangle_{\alpha_1+\epsilon}=\braket{\mathcal{O}-w_\epsilon\mathcal{O}}_{\alpha_1}
$$

$$
\langle f(U)) \rangle_{\alpha_1}
$$

15/35

One can use large Δ*α***, at the cost of** *O*(Δ*α*) **effects in the derivative** B **Statistical errors add in quadrature: signal only visible at large** Δ*α* B

2. Epsilon-reweighting $\langle O \rangle_{\alpha_1} - \langle O \rangle$

Can go to larger Δ*α* **than with** *ϵ* **reweighing** B

Uncertainties benefit from correlated cancellations

Errors increase very rapidly with $\Delta a = \epsilon$ B

3. Using Flows $\langle \mathcal{O}(U) - w(f(U))\mathcal{O}\rangle$

Uncertainties benefit from correlated cancellations

O How to compute derivative observables?

1.Independent ensembles: $\langle \mathcal{O} \rangle_{\alpha_1} - \langle \mathcal{O} \rangle_{\alpha_2}$

/35 **Fernando Romero-López, Uni Bern**

Complectic-Meylating derivative of the complex plane.
$$
\frac{d\langle O\rangle}{d\alpha} \simeq \frac{\langle O\rangle_{\alpha_1} - \langle O\rangle_{\alpha_2}}{\Delta\alpha} \xrightarrow{\text{action}} \frac{\text{action}}{\text{parameter}}
$$
\n
$$
\text{independent ensembles:} \quad \langle O\rangle_{\alpha_1} - \langle O\rangle_{\alpha_2}
$$

$$
\rangle_{\alpha_1+\epsilon}=\left\langle \mathcal{O}-w_{\epsilon}\mathcal{O}\right\rangle_{\alpha_1}
$$

$$
\langle f(U)) \rangle_{\alpha_1}
$$

One can use large Δ*α***, at the cost of** *O*(Δ*α*) **effects in the derivative** B **Statistical errors add in quadrature: signal only visible at large** Δ*α* B

2. Epsilon-reweighting $\langle O \rangle_{\alpha_1} - \langle O \rangle$

Can go to larger Δ*α* **than with** *ϵ* **reweighing** B

Uncertainties benefit from correlated cancellations

Errors increase very rapidly with $\Delta a = \epsilon$ B

3. Using Flows $\langle \mathcal{O}(U) - w(f(U))\mathcal{O}\rangle$

Uncertainties benefit from correlated cancellations

Best of both worlds!

Use an equivariant flow architecture based on the Gradient Flow

$$
U_{\mu}'(x)=e^{F(U)}U_{\mu}(x) \hspace{1cm} F=
$$

Untraced Wilson loops that start and end at *x*

Traceless-antihermitian projection

"Residual layers"

trainable

[\[Abbott et al, 2305.02402\]](https://arxiv.org/abs/2305.02402) **See also: [Bacchio et al, 2212.08469] [Gerdes et al, 2410.13161] [Nagai, Tomiya, 2103.11965]**

 $\sum \delta_i \, \mathrm{P} \big(W^i{}_{\mu\nu} \big)$

Use an equivariant flow architecture based on the Gradient Flow

$$
U_{\mu}'(x)=e^{F(U)}U_{\mu}(x)\hspace{1cm}F=\sum_{i}\delta_{i}\operatorname{P}(W^{i}_{\ \mu\nu})
$$

Untraced Wilson loops that start and end at *x*

Traceless-antihermitian projection

"Residual layers"

trainable

[\[Abbott et al, 2305.02402\]](https://arxiv.org/abs/2305.02402) **See also: [Bacchio et al, 2212.08469] [Gerdes et al, 2410.13161] [Nagai, Tomiya, 2103.11965]**

Split lattice in active + frozen variables, and update only active (upper triangular Jacobian)

16/35

Use an equivariant flow architecture based on the Gradient Flow

$$
U_{\mu}'(x)=e^{F(U)}U_{\mu}(x) \hspace{1cm} F=\sum
$$

Untraced Wilson loops that start and end at *x*

Traceless-antihermitian projection

Build arbitrary loops "convoluting" the frozen links \bullet **Force built from** $V^{(1)}_{\mu}$ $\overline{(S_{x,\mu\nu}^R)}$ $W_{x,\mu\nu}^R U_\mu$ U_μ **convoluted links**

"Residual layers"

trainable

[Similar to L-CNN, Favoni et al, 2012.12901]

[\[Abbott et al, 2305.02402\]](https://arxiv.org/abs/2305.02402) **See also: [Bacchio et al, 2212.08469] [Gerdes et al, 2410.13161] [Nagai, Tomiya, 2103.11965]**

 $\sum \delta_i\,\mathrm{P}\big(W^i{}_{\mu\nu}\big)$

Split lattice in active + frozen variables, and update only active (upper triangular Jacobian)

17/35

 \bullet **Gradient flow minimizes the action on a gauge configuration by solving the differential equation [M. Lüscher, arXiv:1006.4518]**

$$
\dot{B}_\mu = - \frac{\delta S(U)}{dB_\mu}
$$

solve numerically with infinitesimal steps

$$
\qquad \qquad \bm{\overline U}_\mu^{(i+1)} = e^{\epsilon F(U^{(i)})} U_\mu^{(i)}
$$

 \bullet **Gradient flow minimizes the action on a gauge configuration by solving the differential equation [M. Lüscher, arXiv:1006.4518]**

The residual layers act as a single and finite step of "generalized" gradient flow \bullet

$$
\dot{B}_\mu = - \frac{\delta S(U)}{dB_\mu}
$$

$$
U_{\mu}'(x)=e^{F(U)}U_{\mu}(x)
$$

$$
\qquad \qquad \bm{\overline U_\mu^{(i+1)}} = e^{\epsilon F(U^{(i)})} U_\mu^{(i)}
$$

$$
F=\epsilon\times\sum_{\mu\neq\nu}\mathrm{P}(W_{\mu\nu}^{1\times1})
$$

solve numerically with infinitesimal steps

17/35

Gradient flow minimizes the action on a gauge configuration by solving the differential equation [M. Lüscher, arXiv:1006.4518]

$$
\dot{B}_\mu = -\frac{\delta S(U)}{dB_\mu}
$$

solve numerically with infinitesimal steps

 \bullet **The residual layers act as a single and finite step of "generalized" gradient flow**

$$
U_{\mu}'(x)=e^{F(U)}U_{\mu}(x)
$$

Close to the original M. Lüscher trivializing map proposal [M. Lüscher, arXiv:0907.5491]

$$
\log J = -\frac{4}{3}\epsilon\sum_{\mu\neq\nu} \, \mathrm{tr} \, W_{\mu\nu}^{1\times1} + O(\epsilon^2) \, \, \rule[.2cm]{0cm}{0cm}
$$

$$
\qquad \qquad \bm{\overline U_\mu^{(i+1)}} = e^{\epsilon F(U^{(i)})} U_\mu^{(i)}
$$

$$
F=\epsilon\times\sum_{\mu\neq\nu}\mathrm{P}(W_{\mu\nu}^{1\times1})
$$

Qualitatively induces a change in the lattice spacing

Numerical demonstrations

 \bullet \bullet

P **Example: gradient flow scales in SU(3) pure gauge**

$$
k_1=\frac{d(t_{0.3}/t_{0.35})}{d(a^2/t_{0.3})}
$$

Derivative of an observable with respect to lattice spacing is useful in constraining the continuum limit

Extrapolate to the continuum as:

$$
\left.\frac{t_{0.3}}{t_{0.35}}\right|_{\text{lat}}=\left.\frac{t_{0.3}}{t_{0.35}}\right|_{\text{cont}}+k_1\frac{a^2}{t_{0.3}}+ \cdot
$$

$$
\langle \pi \vert \mathcal{O} \vert \pi \rangle = \frac{1}{2M_\pi} \frac{dM_\pi}{d\lambda} \Big \vert_{\lambda=0}
$$

Computation of hadronic matrix elements can be formulated as a derivative

$S_{\lambda} = S + \lambda O$

"Feynman-Hellmann theorem"

$$
\langle \pi | \mathcal{O} | \pi \rangle = \left. \frac{1}{2M_\pi} \frac{dM_\pi}{d\lambda} \right|_{\lambda=0}
$$

Computation of hadronic matrix elements can be formulated as a derivative

$$
S_{\lambda}=S+\lambda\mathcal{O}
$$

O If the operator is the gluon energy-momentum tensor, it leads to the gluon momentum fraction

$$
\mathcal{O} = -\frac{\beta}{N_c}\mathrm{Tr}\,\mathrm{Re}\Bigg(\sum_i U_{i0} - \sum_{i
$$

"Feynman-Hellmann theorem"

$$
\qquad \qquad \frac{dM_\pi}{d\lambda} = -\frac{3M_\pi}{2} \langle x \rangle^{\rm latt}_g
$$

Computation of hadronic matrix elements can be formulated as a derivative \bullet

$$
S_{\lambda}=S+\lambda\mathcal{O}
$$

O If the operator is the gluon energy-momentum tensor, it leads to the gluon momentum fraction

$$
\mathcal{O} = -\frac{\beta}{N_c}\mathrm{Tr}\,\mathrm{Re}\Bigg(\sum_i U_{i0} - \sum_{i
$$

$$
\langle \pi | \mathcal{O} | \pi \rangle = \left. \frac{1}{2M_\pi} \frac{dM_\pi}{d\lambda} \right|_{\lambda=0}
$$

The gauge action becomes just an anisotropic target! \bullet

$$
S_\lambda = -\frac{\beta}{N_c}(1+\lambda)\,{\rm Re}\,{\rm Tr}\sum_i U_{i0} - \frac{\beta}{N_c}(1-\!
$$

Train from from $\lambda = 0$ to non-zero λ

"Feynman-Hellmann theorem"

$$
\frac{dM_\pi}{d\lambda}=-\frac{3M_\pi}{2}\langle x\rangle^{\rm latt}_g
$$

\bullet

Dependence of observables with respect to quark masses is useful for tuning, or e.g. sigma terms.

As an example, computeB

$$
\frac{d\langle \mathcal{O} \rangle}{d\kappa} = \frac{\langle \mathcal{O} \rangle_{\kappa_1} - \langle \mathcal{O} \rangle_{\kappa_2}}{\Delta \kappa}
$$

$$
N_f = 2
$$
 QCD with "exact determinant" 1.20

$$
\beta = 5.6, \ \kappa_1 = 0.1530
$$

$$
\beta = 5.6, \ \kappa_2 = 0.1545
$$

$$
\beta = 5.6, \ \kappa_3 = 0.1545
$$

epsilon reweighing

observable

A more exhaustive comparison needs training costs, flow evaluation costs, observable evaluation costs…

23/35

Comparison at fixed number of samples

Towards hadron structure

in dynamical QCD

Training can be done at small volume V=44 with exact fermion determinant train $ESS = 99.6\%$ (c.f. baseline $ESS = 93.7\%)$

Consider Nf=2 QCD with twisted-mass fermions

- B
- B
- **Pion mass**
- B

Compute matrix elements of the gluon part of the Energy-Momentum tensor: \bullet

Tree-level improved gauge action

Lattice spacing $a=0.10~{\rm fm}$

 $M_\pi=520\ \mathrm{MeV}$

Target volume $12^3 \times 24$

$$
\mathcal{O} = -\frac{\beta}{N_c}\mathrm{Tr}\,\mathrm{Re}\Bigg(\sum_i U_{i0} - \sum_{i
$$

26/35

At the target volume, cannot evaluate the fermion determinant \bullet

For the flow reweighting factors, need to evaluate stochastically the ratio of determinants $\frac{\det DD^\dagger [f(U)]}{\det DD^\dagger [U]} = \int D\phi \exp^{-\phi^\dagger (MM^\dagger)^{-1} \phi} \hspace{2cm} M = D[f(U)] D^{-1}[U]$

$$
= D[f(U)]D^{-1}[U] \nonumber
$$

For the flow reweighting factors, need to evaluate stochastically the ratio of determinants $\frac{\det DD^\dagger [f(U)]}{\det DD^\dagger [U]} = \int D\phi \exp^{-\phi^\dagger (MM^\dagger)^{-1}\phi}$ \overline{M}

At the target volume, cannot evaluate the fermion determinant

Can actually add a pseudofermion model on top of the gauge flow! $\phi'(x) = A(U)\phi(x) + B(U)U_\mu(x)\phi(x+\mu) \longrightarrow \phi' \simeq M\phi$

Trainable

neighbor

$$
= D[f(U)] D^{-1}[U] \nonumber
$$

For the flow reweighting factors, need to evaluate stochastically the ratio of determinants $\frac{\det DD^\dagger [f(U)]}{\det DD^\dagger [U]} = \int D\phi \exp^{-\phi^\dagger (MM^\dagger)^{-1} \phi} \hspace{1in} M =$

At the target volume, cannot evaluate the fermion determinant

Can actually add a pseudofermion model on top of the gauge flow! $\phi'(x) = \underbrace{A(U)}_{\phi(x)} \phi(x) + \underbrace{B(U)}_{\text{parallel-transported}} U_\mu(x) \phi(x+\mu) \quad \longrightarrow \quad \phi' \; \simeq \; M \phi$

neighbor

 $ESS(\text{stoch ratio det}) = 45\%$ $ESS(PF flow) = 50\%$

This leads to an increase of the ESS in the target volume:

27/35

- **Training costs: 100 hours in 16 A100s.** \bigcirc
- **Configuration generation (Chroma): 600s/config in 1 A100** \bullet
- **Flow application: 20s/config in 1 A100**
- **Measurements: 2 x 600s/config in 1 A100** \bigcirc

1. Using flows:

2.Epsilon reweighting:

- **Need x5 more configs**
- **Same generation costs** \bullet
- **Measurements only needed once**

Practical applications of machine-learned flows on gauge fields

Ryan Abbott, b,c Michael S. Albergo, d Denis Boyda, b,c Daniel C. Hackett, $a,b,c,*$ Gurtej Kanwar, e Fernando Romero-López, b,c Phiala E. Shanahan b,c and Julian M. Urban b,c

BOHALS! Transformed Replica EXchange $($ T-REX)

29 /35

arXiv:2404.11674 Dan Hackett (FNAL) See talk @ latt23

A known algorithm for lattice QCD is running several Markov Chains in parallel and proposing swaps

$$
U_1^{(n+1)} = U_0^{(n+1)}\\
$$

$$
U_0^{(n+2)} = U_1^{(n+1)}\\
$$

$$
p_{\rm acc} = \min\left[1, \frac{p_0(U_1)p_1(U_0)}{p_0(U_0)p_1(U_1)}\right]
$$

\bullet **[Hasenbusch, arXiv:1706.04443], [Bonanno et al, arXiv:2012.14000 & arXiv:2014.14151]**

Can accelerate mixing of topological sectors if one chain "moves faster".

Faster topology mixing

32/35

All integrated autocorrelation times reduce significantly \bullet

All integrated autocorrelation times reduce significantly \bullet

33/35

All integrated autocorrelation times reduce significantly \bigcirc

Neglecting flow costs, computational advantage if one is interested in all three chains \bigcirc **If only the "finest" ensembles is used, almost break even**

35/35

- **Lattice QCD is the first-principle treatment of the strong interaction at hadronic energies** V
- **Flow-based sampling has the potential to accelerate sampling of QCD configurations** \bullet
- **Direct sampling remains challenging, but current flows can map effectively between nearby parameters** M
- **Flow models can be used to compute derivative observables by generating "correlated ensembles"** M
- **Promising numerical demonstrations in QCD / Yang Mills** M
- **Next steps: correlated ensembles at state-of-the-art QCD scales!**

Flows allow for increased acceptance rates in replica exchange: T-REX Acceptance rate degrades with volume. Use an action with localized defects? What about fermions?

- **Lattice QCD is the first-principle treatment of the strong interaction at hadronic energies** M
- **Flow-based sampling has the potential to accelerate sampling of QCD configurations** \bullet
- **Direct sampling remains challenging, but current flows can map effectively between nearby parameters** M
- **Flow models can be used to compute derivative observables by generating "correlated ensembles"** M
- **Promising numerical demonstrations in QCD / Yang Mills** M
- **Next steps: correlated ensembles at state-of-the-art QCD scales!**

Flows allow for increased acceptance rates in replica exchange: T-REX Acceptance rate degrades with volume. Use an action with localized defects? What about fermions?