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Flows and lattice QCD

5

Lattice Field Theory is a numerical first-principles treatment of  the generic QFT

• Significant progress in computing QCD observables at hadronic energies.
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Flows and lattice QCD
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Lattice Field Theory is a numerical first-principles treatment of  the generic QFT

Lattice QCD can be formulated as a sampling problem:

• Path integral in Euclidean or imaginary time: statistical meaning

𝒵 = ∫ Dϕ e−SE(ϕ) SE(ϕ) = ∫ d4x ℒE(ϕ)
Euclidean action

, where

• Significant progress in computing QCD observables at hadronic energies.
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Flows and lattice QCD

5

Increasing interest in applying generative flow models to LQCD

Lattice Field Theory is a numerical first-principles treatment of  the generic QFT

• Can flow models reduce computational costs?


Lattice QCD can be formulated as a sampling problem:

• Path integral in Euclidean or imaginary time: statistical meaning

𝒵 = ∫ Dϕ e−SE(ϕ) SE(ϕ) = ∫ d4x ℒE(ϕ)
Euclidean action

, where

• Significant progress in computing QCD observables at hadronic energies.
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The main problem

6

autocorrelation 
time

Continuum limit

Topological  
charge

computational 
cost

≃

(Wilson loop)

Computational cost of  
generating independent 

samples “explodes” towards 
the continuum limit:


Critical Slowing Down

[Schaefer et al., arXiv:1009.5228]
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The main problem

6

autocorrelation 
time

Continuum limit

Topological  
charge

computational 
cost

≃

(Wilson loop)

Computational cost of  
generating independent 

samples “explodes” towards 
the continuum limit:


Critical Slowing Down

Can flows help? 

[Schaefer et al., arXiv:1009.5228]
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The need for a continuum limit 

7

[BMW, 2002.12347]

Finer lattice spacings  
to increase precision!

HVP of muon magnetic moment  

Continuum limit

Continuum limit

[Green et al., 2103.01054]

Binding energy of H dibaryon 
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Where do we stand?

8

(1+1)d real scalar field theory

[Albergo, Kanwar, Shanahan 1904.12072]

[Hackett, Hsieh, Albergo, Boyda, JW Chen, KF Chen, Cranmer, Kanwar, Shananan 2107.00734]


(1+1)d Abelian gauge theory

[Kanwar, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan 2003.06413]


(1+1)d non-Abelian gauge theory

[Kanwar, Albergo, Boyda, Cranmer, Hackett, Racanière, Rezende, Shanahan 2003.06413]


(1+1)d Yukawa model

i.e. real scalar field theory + fermions

[Albergo, Kanwar, Racanière, Rezende, Urban, Boyda, Cranmer, Hackett, Shanahan 2106.05934]


Schwinger model i.e. (1+1)d QED

[Albergo, Boyda, Cranmer, Hackett, Kanwar, Racanière, Rezende, FRL, Shanahan, Urban 2202.11712]


2D fermionic gauge theories with pseudofermions

[Abbott, Albergo, Boyda, Cranmer, Hackett, Kanwar, Racanière, Rezende, FRL, Shanahan, Tian, Urban 2207.08945]


QCD/SU(3) in the strong-coupling region

[Abbott et al, 2208.03832] [Abbott et al, 2305.02402] 


…

Still some developments are needed for at-scale QCD

(in our collaboration) 

https://arxiv.org/pdf/1904.12072.pdf
https://arxiv.org/abs/2107.00734
https://arxiv.org/abs/2107.00734
https://arxiv.org/abs/2107.00734
https://arxiv.org/abs/2107.00734
https://arxiv.org/abs/2107.00734
https://arxiv.org/pdf/2003.06413.pdf
https://arxiv.org/abs/2003.06413
https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2202.11712
https://arxiv.org/abs/2207.08945
https://arxiv.org/abs/2208.03832
https://arxiv.org/abs/2305.02402


/35 Fernando Romero-López, Uni Bern

Flows in 4D

9

Already dealing with 4D gauge theories.

Direct sampling remains hard

Need very high-quality models to reach large volumes

model 
quality

(Naive volume scaling is exponential)

[Abbott et al, 2305.02402] 

https://arxiv.org/abs/2305.02402
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Flows in 4D

9

Already dealing with 4D gauge theories.

Direct sampling remains hard

Instead, explore applications with smaller gap between theories:

Can be useful for observable evaluation (and potentially sampling)

Need very high-quality models to reach large volumes

model 
quality

(Naive volume scaling is exponential)

[Abbott et al, 2305.02402] 

https://arxiv.org/abs/2305.02402
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Flows for the generation 
of correlated ensembles

[arXiv:2401.10874]
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Generative flow models

11

approximates 
target distribution 

(model)

Model probability

easy-to-sample 
distribution 

(prior)

f(z)r(z) q(ϕ) ≃ p(ϕ)
tractable Jacobian  

&  
invertible

[Rezende, Mohamed, 1505.05770] 

“Trainable change of variables”
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Generative flow models

11

approximates 
target distribution 

(model)

composed of 
 many simple layers 

parametrized by neural networks 
(trainable and expressive) Model probability

easy-to-sample 
distribution 

(prior)

f(z)r(z) q(ϕ) ≃ p(ϕ)
tractable Jacobian  

&  
invertible

[Rezende, Mohamed, 1505.05770] 

…

“Trainable change of variables”
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Generative flow models

11

approximates 
target distribution 

(model)

composed of 
 many simple layers 

parametrized by neural networks 
(trainable and expressive) Model probability

easy-to-sample 
distribution 

(prior)

f(z)r(z) q(ϕ) ≃ p(ϕ)
tractable Jacobian  

&  
invertible

[Rezende, Mohamed, 1505.05770] 

…

 But exact sampling can be recovered via Markov Chain
! Trained models are not perfect.

“Trainable change of variables”
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Flows for correlated ensembles

12

approximates 
target distribution 

(model)

Non-trivial prior  
sampled via MCMC

f(z)pβ (z) q(ϕ) ≃ pβ+Δβ (ϕ)
tractable Jacobian  

&  
invertible

 Theories are “closer” and current flow models are able to effectively bridge between them
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Derivative observables

13

In lattice QCD there are many examples where derivatives with respect to action parameters are useful

action  
parameter
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Derivative observables

13

In lattice QCD there are many examples where derivatives with respect to action parameters are useful

action  
parameter

Continuum limit, e.g., constraining the slope of  a continuum extrapolation

Matrix element using Feynman-Hellmann techniques: sigma terms, hadron structure.

QCD + QED, e.g., derivative with respect to electromagnetic coupling

Derivatives with respect to chemical potential, theta term… (caveat: sign problem) 
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Computing derivatives

14

action  
parameterHow to compute derivative observables?
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action  
parameterHow to compute derivative observables?

1.Independent ensembles: 

Compute                  on independent Markov Chains.
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Compute difference on a single ensemble using reweighing at 
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Computing derivatives

14

action  
parameterHow to compute derivative observables?

1.Independent ensembles: 

Compute                  on independent Markov Chains.

2.Epsilon-reweighting

Compute difference on a single ensemble using reweighing at 

3.Using Flows

Create a “correlated ensemble” using a flow and compute the difference

where [see also S. Bacchio, 2305.07932]
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Computing derivatives

15

action  
parameterHow to compute derivative observables?

1.Independent ensembles: 

3.Using Flows

One can use large , at the cost of   effects in the derivativeΔα O(Δα)
Statistical errors add in quadrature: signal only visible at large  Δα

Uncertainties benefit from correlated cancellations

Uncertainties benefit from correlated cancellations

Can go to larger  than with  reweighingΔα ϵ

Errors increase very rapidly with Δα = ϵ

2.Epsilon-reweighting
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Computing derivatives

15

action  
parameterHow to compute derivative observables?

1.Independent ensembles: 

3.Using Flows

One can use large , at the cost of   effects in the derivativeΔα O(Δα)
Statistical errors add in quadrature: signal only visible at large  Δα

Uncertainties benefit from correlated cancellations

Uncertainties benefit from correlated cancellations

Can go to larger  than with  reweighingΔα ϵ

Errors increase very rapidly with Δα = ϵ

Best of both  
worlds!

2.Epsilon-reweighting
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The architecture

16

Use an equivariant flow architecture based on the Gradient Flow

Untraced Wilson loops  
that start and end at x

Traceless-antihermitian projection

“Residual layers”
[Abbott et al, 2305.02402]

trainable

See also: [Bacchio et al, 2212.08469]
[Gerdes et al, 2410.13161]

    [Nagai, Tomiya, 2103.11965]

https://arxiv.org/abs/2305.02402
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The architecture

16

Use an equivariant flow architecture based on the Gradient Flow

Untraced Wilson loops  
that start and end at x

Traceless-antihermitian projection

“Residual layers”
[Abbott et al, 2305.02402]

trainable

See also: [Bacchio et al, 2212.08469]

Split lattice in active + frozen variables, and update only active (upper triangular Jacobian)

[Gerdes et al, 2410.13161]
    [Nagai, Tomiya, 2103.11965]

https://arxiv.org/abs/2305.02402
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The architecture

16

Use an equivariant flow architecture based on the Gradient Flow

Untraced Wilson loops  
that start and end at x

Traceless-antihermitian projection

Build arbitrary loops “convoluting” the frozen links 

Force built from 
convoluted links

“Residual layers”
[Abbott et al, 2305.02402]

trainable

[Similar to L-CNN, Favoni et al, 2012.12901]

See also: [Bacchio et al, 2212.08469]

Split lattice in active + frozen variables, and update only active (upper triangular Jacobian)

[Gerdes et al, 2410.13161]
    [Nagai, Tomiya, 2103.11965]

https://arxiv.org/abs/2305.02402
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Connection to gradient flow

17

Gradient flow minimizes the action on a gauge configuration by solving the differential equation

solve numerically with infinitesimal steps

[M. Lüscher, arXiv:1006.4518 ]
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Connection to gradient flow
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Gradient flow minimizes the action on a gauge configuration by solving the differential equation

solve numerically with infinitesimal steps

[M. Lüscher, arXiv:1006.4518 ]

The residual layers act as a single and finite step of  “generalized” gradient flow
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Connection to gradient flow

17

Gradient flow minimizes the action on a gauge configuration by solving the differential equation

solve numerically with infinitesimal steps

[M. Lüscher, arXiv:1006.4518 ]

Close to the original M. Lüscher trivializing map proposal [M. Lüscher, arXiv:0907.5491]

Qualitatively induces a change 
 in the lattice spacing

The residual layers act as a single and finite step of  “generalized” gradient flow
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Numerical 
demonstrations
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Continuum limit

19

0.00 0.05 0.10 0.15 0.20 0.25 0.30

a2/t0.3

0.846

0.848

0.850

0.852

0.854

0.856

0.858

0.860

t 0
.3

0/
t 0

.3
5

flowed ensemble
ensemble at Ø = 6.02
with flowed ensemble
≤ reweighting

Derivative of  an observable with respect to lattice spacing is useful in constraining the continuum limit

Example: gradient flow scales in SU(3) pure gauge

Extrapolate to the continuum as:

Need x2 less samples with flows!
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Hadron structure

20

Computation of  hadronic matrix elements can be formulated as a derivative

“Feynman-Hellmann theorem”
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Computation of  hadronic matrix elements can be formulated as a derivative

“Feynman-Hellmann theorem”

If  the operator is the gluon energy-momentum tensor, it leads to the gluon momentum fraction 
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Hadron structure

20

Computation of  hadronic matrix elements can be formulated as a derivative

“Feynman-Hellmann theorem”

The gauge action becomes just an anisotropic target! 

Train from from  
 to non-zero λ = 0 λ

If  the operator is the gluon energy-momentum tensor, it leads to the gluon momentum fraction 
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Feynman-Hellmann results

21

-0.01 0≤ 0.01

∏

0.560

0.565

0.570

0.575

0.580

0.585

aM
º

heatbath ensembles
≤ reweighting
flowed ensembles

Results in quenched QCD using central finite differences for derivatives

Same setup as [QCDSF, arXiv:1205.6410]
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Feynman-Hellmann results

21

-0.01 0≤ 0.01

∏

0.560

0.565

0.570

0.575

0.580

0.585

aM
º

heatbath ensembles
≤ reweighting
flowed ensembles

Results in quenched QCD using central finite differences for derivatives

method

0.2

0.4

0.6

0.8

1.0

1.2

1.4

hx
ila

tt
g

indep ensembles
≤ reweighting
flowed ensembles

x5 error  
reduction!

Same setup as [QCDSF, arXiv:1205.6410]
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Quark mass dependence

22

Dependence of  observables with respect to quark masses is useful for tuning, or e.g. sigma terms.

dW1£1

d∑
dW2£2

d∑
dW4£4

d∑
dQ2

d∑
dt0.10
d∑

observable

0.90

0.95

1.00

1.05

1.10

1.15

1.20

no
rm

al
iz

ed
va

lu
e

≤ reweighting
flowed ensembles   QCD with “exact determinant”Nf = 2   QCD with “exact determinant”Nf = 2

As an example, compute
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Summary of results

23

Ratio of variance  
with respect to 

epsilon reweighing 

Overall, number of  required samples for a error goal decreases

dW1£1

d∑
dW2£2

d∑
dW4£4

d∑
dQ2

d∑
dt0.10
d∑

t0.3
t0.35

ØØ
cont

hxilatt
g

d2Mº
d∏2

observable

100

101

102

im
pr

ov
em

en
t

fa
ct

or

Nf = 2 QCD
Pure Gauge
Feyman-Hellmann

factor 2 reduction

x60

x20

A more exhaustive comparison 
needs training costs, flow 

evaluation costs, observable 
evaluation costs…

Comparison at fixed 
number of samples
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Towards hadron structure 

in dynamical QCD
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The setup

25

Consider Nf=2 QCD with twisted-mass fermions

Training can be done at small volume V=44 with exact fermion determinant

Tree-level improved gauge action


Lattice spacing


Pion mass


Target volume

Compute matrix elements of  the gluon part of  the Energy-Momentum tensor:
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Pseudofermions

26

At the target volume, cannot evaluate the fermion determinant

For the flow reweighting factors, need to evaluate stochastically the ratio of  determinants
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Pseudofermions

26

At the target volume, cannot evaluate the fermion determinant

For the flow reweighting factors, need to evaluate stochastically the ratio of  determinants

Can actually add a pseudofermion model on top of  the gauge flow!

Trainable

parallel-transported  
neighbor
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Pseudofermions

26

At the target volume, cannot evaluate the fermion determinant

For the flow reweighting factors, need to evaluate stochastically the ratio of  determinants

Can actually add a pseudofermion model on top of  the gauge flow!

Trainable

parallel-transported  
neighbor

This leads to an increase of  the ESS in the target volume:
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Preliminary results

27

Fit range:  [tmin, T/2]

Error reduction 
of about 2x-3x

Need 5-10 times less configs!

0 2 4 6 8 10 12

tmin

0.0

0.5

1.0

1.5

2.0

2.5

hx
ila

tt
g

≤-reweighting

flow

[Talk presented at Lat24 by R. Abbott]
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Costs 

28

Training costs: 100 hours in 16 A100s. 

Configuration generation (Chroma): 600s/config in 1 A100 

Flow application: 20s/config in 1 A100 

Measurements: 2 x 600s/config in 1 A100

1. Using flows:

2.Epsilon reweighting:

Need x5 more configs

Same generation costs

Measurements only needed once

0 2000 4000 6000 8000 10000

target Nconf

0

5000

10000

15000

co
st

(A
10

0
·h

ou
r)

flow

≤-reweighting
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Bonus:

Transformed Replica EXchange 


(T-REX)

arXiv:2404.11674 Dan Hackett (FNAL)
See talk @ latt23
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Replica EXchange (REX)

30

A known algorithm for lattice QCD is running several Markov Chains in parallel and proposing swaps

Can accelerate mixing of  topological sectors if  one chain “moves faster”.

[Hasenbusch, arXiv:1706.04443], [Bonanno et al, arXiv:2012.14000 & arXiv:2014.14151]
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Transformed Replica EXchange (T-REX)

31

Swapping of  configurations can be combined with a flow to increase swap probability 
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Example

32

Topology mixing slows down

Faster topology mixing
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MCMC history

33

All integrated autocorrelation times reduce significantly
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MCMC history

33

All integrated autocorrelation times reduce significantly

Neglecting flow costs, computational advantage if  one is interested in all three chains

If  only the “finest” ensembles is used, almost break even
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Summary & Outlook

35

Lattice QCD is the first-principle treatment of  the strong interaction at hadronic energies

Flow-based sampling has the potential to accelerate sampling of  QCD configurations

Direct sampling remains challenging, but current flows can map effectively between nearby parameters

Flow models can be used to compute derivative observables by generating “correlated ensembles”

Promising numerical demonstrations in QCD / Yang Mills

Next steps: correlated ensembles at state-of-the-art QCD scales!

Flows allow for increased acceptance rates in replica exchange: T-REX

Acceptance rate degrades with volume. Use an action with localized defects? What about fermions? 
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Summary & Outlook

35

Lattice QCD is the first-principle treatment of  the strong interaction at hadronic energies

Flow-based sampling has the potential to accelerate sampling of  QCD configurations

Thanks!

Direct sampling remains challenging, but current flows can map effectively between nearby parameters

Flow models can be used to compute derivative observables by generating “correlated ensembles”

Promising numerical demonstrations in QCD / Yang Mills

Next steps: correlated ensembles at state-of-the-art QCD scales!

Flows allow for increased acceptance rates in replica exchange: T-REX

Acceptance rate degrades with volume. Use an action with localized defects? What about fermions? 


