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Table 1: Models submitted to the CaloChallange.

Dataset

Approach Model Code 1y 1 ;t e 9 3 Section
CaloShowerGAN [21] [22] v v 3.1
- .
GAN MDMA [23, 24] [25] v v 3.2
BoloGAN [26] [27] v v 3.3
DeepTree [28, 29] [30] v 34
L2LFlows [31, 32] [33] v v 4.1
CaloFlow [34, 35 36,37 v v v v 42
NF CaloINN [38] [39] v v v 4.3
SuperCalo [40] [41] v 44
CaloPointFlow [42] [43] v v 4.5
CaloDiffusion [44] [45] v v v v 5.1
CaloClouds [46, 47] [48, 49| v 5.2
Diffusion CaloScore [50, 51 [52, 53] Vv v v 5.3
CaloGraph [54] [55] v v 5.4
CaloDiT [56] [57] 5.5
Calo-VQ [58] [59] v v v 6.1
CaloMan [60] 6] v v 6.2
VAE DNNCaloSim [62, 63] [64] v 6.3
: Geant4-Transformer [63] [66] v 6.4
CaloVAE+INN [38] [39] v v v v 6.5
CaloLatent [67] [68] v 6.6
. CaloDREAM [69] [70] v 7.1

CFM -

CaloForest [71] [72] v v 7.2
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Metric: High-level Features
(Histograms)

e The energy deposition in each voxel: Z;,.

e The energy depositions in each layer of the calorimeter, as the sum over all voxels
in that layer: E; = Ti,.

e The total energy deposition in the shower, as sum over all voxels, normalized to
the incident energy: Egep/Eine = Y, Zia/ Eine-

e The centers of energy in 7, ¢, and r direction, defined via >, 1,Zia/ >, Zia- The
locations [, are either ¢, = r,sinay,. 1, = r, cosa, or r,, where r, and «, are the
centers of the voxels in a and r. These are taken as the mean of the voxel boundary
values defined in the binning.xml files. The sum goes over all voxels a in a given
layer.

e The width of the center of energy distributions in 7, ¢, r direction:
\/ St _ (% zazm)z

> aZia > oZLia

e The sparsity, defined as 1 minus the activity, with the activity being the fraction

of voxels per layer with an energy deposition above threshold (threshold is defined
per dataset in section 2).

For each of these observables, we compute the separation power between the
submissions and the held-out test set. We use the same binning as shown in appendix A
in the reference histograms for the two GEANT4 datasets. The separation power between

two histograms is defined as [186]

hlz’ - th
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Voxel

In deep learning, particularly in computer vision and 3D data processing, a voxel is the 3D equivalent

of a pixel. It represents a single volumetric element in a 3D grid.

Key Characteristics of Voxels:

1. 3D Unit:

A voxel represents a discrete unit of space in a three-dimensional volume.

Analogous to how a pixel represents a unit in a 2D image.

2. Value Representation:

Each voxel contains a value, which could represent:
e Intensity (e.g., brightness or density).
e Alabel in the case of segmentation tasks.

* Presence or absence of an object (e.g., binary values for occupancy grids).

3. Applications:

3D Imaging: Medical imaging (CT scans, MRIs), where voxels represent tissue density.

3D Object Representation: Used in tasks such as 3D object classification, segmentation, and

reconstruction.

Occupancy Grids: In robotics or autonomous systems, voxels are used for mapping

environments.

3

Simulations: Used in physics simulations for volume-based calculations.
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Figure 32: Separation power of energy depositions with threshold at 1 MeV. Figure 33: Separation power of centers of energy with threshold at 1 MeV.



Width of Center of Energy, dataset 1 - photons
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Figure 34: Separation power of widths of centers of energy with threshold at 1 MeV.
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Figure 35: Separation power of centers of energy with threshold at 1 MeV.



Metric: Pearson Correlation
Coefficient (PCC)

2. Correlations

The energies deposited in subsequent layers are correlated with each other due to the
size of the particle shower in z direction. One measure to study if these correlations are
learned correctly is given by Pearson correlation coefficient (PCC) between the layer-
wise energy depositions [20]. For two sets of layer energies {F;} and {E;} of the same
size, the PCC is given by

5, (B — mean(E )) (Bj — mean(E)))

\/Zk ik — mean ( Zk ik me:zm(EJ,,))2

where £k runs over all samples in the set, and 7 and j are layer numbers.

PCC(E;, E;) , (40)




Pearson Correlation
Coefficient (PCC)

(&) The Pearson correlation coefficient (denoted as 7) is a statistical measure that quantifies the
strength and direction of the linear relationship between two variables. It is widely used in statistics

and data analysis to determine how closely two variables are related.

Formula:

The formula for the Pearson correlation coefficient is:

D > ()
\/Z:LJ_(”{H EVZL(% 9)?

r

Where:
e ; and y;: The individual data points of variables X and Y.
e Zandy:Themeansof X and Y.

e 1n: The number of data points.

Alternatively, the formula can also be written in terms of covariance and standard deviations:

Cov(X,Y)
r—=————=="

gx - gy
Where:
e Cov(X,Y): The covariance between X and Y.

3
e oy and oy: The standard deviations of X and Y.



Pearson Correlation
Coefficient (PCC)
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We now move on to investigate the correlations between the energies deposited in
the layers in figure 38. Overall, most of the submissions reproduce the pattern induced
by GEANT4 well, but there is a noticeable tendency of models to overestimate the
correlation between layers 3 and 12, as seen in the top right corners. Some models
based on GANs and VAEs, which had higher separation powers, also seem to have a
harder time reproducing these correlations.
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