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The Standard
Cosmological Model

@®The universe has been expanding
since a “‘big bang”
®The flat ACDM model:
~5% baryonic matter
~25% cold dark matter (CDM)
~70% dark energy (A\)
®The recent cosmic expansion 1S
accelerating

®Supported by observational facts

YOU ARE HERE

ACCELERATING EXPANSION

A little more than 5 billion years ago,
dark energy caused the universe

to expand increasingly fast.

INFLATION

In less than 10°° of a second after

the Big Bang, the universe burst open,
expanding faster than the speed of light
and flinging all the matter and energy in
the universe apart in all directions.

BIG BANG

The universe expanded violently from an
extremely hot and dense initial state some
13.7 billion years ago.

4 Credit: Discover Magazine




Cosmic Microwave Background (CMB)
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Cosmological Structure Formation
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The probes based on the growth of structures have put a stringent
test on the ACDM model.
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The S5 (or og) Tension

® The cosmic inhomogeniety 1s
described by the variance of
overdensity fluctuations at a scale

of 8 h~'Mpc
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® The extrapolation from the CMB
at 7 ~ 1100 disagrees with the
late-time observations at z < 2 at
a statistically significant level
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The S5 (or og) Tension

® The cosmic inhomogeniety 1s
described by the variance of
overdensity fluctuations at a scale

of 8 h~'Mpc
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Galaxy clusters

® The extrapolation from the CMB
at 7 ~ 1100 disagrees with the
late-time observations at z < 2 at
a statistically significant level
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Cluster Cosmology

® Galaxy clusters locate at the density
peaks of large-scale structures

® The number density of clusters over
time puts strong constraints on
cosmology

® Cluster cosmology is rooted in the
measurement of the halo mass function

E Z = 0025 - 025
- 2=0.55-0.90

QM =0.25, Qp =0, h=0.72
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https://ui.adsabs.harvard.edu/abs/2009ApJ...692.1060V/abstract
https://www.nature.com/articles/35051000

State of the Art

1.1 4 SPT(S5Z+pol) clusters + (DES Y3 + HST) WL
ROSAT clusters + WL (WtG)
KiDS DR3 clusters + WL
1.0 -
DES Y1 clusters + 4x2pt | @ Cluster cosmology has
DES Y1 clusters + WL - :
CHSHEr received great success in
@ 0.9- multiple wavelengths
® Current sample sizes ~ 10°
0 clusters (or only few
| percents of the whole sky).
0.7 -
Bocquet+24
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The Latest Cosmology From eROSITA All-SKy Survey (eRASS)
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The Latest Cosmology From eROSITA All-SKy Survey (eRASS)
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https://ui.adsabs.harvard.edu/abs/2024arXiv240208458G/abstract

eROSITA Cluster Cosmology

® ¢ROSITA 1s an X-ray space mission (2019-2024) aiming to search for galaxy
clusters from all sky.

® The eROSITA all-sky survey has stopped due to the Ukraine War. Data from
Science Verification (eFEDS) and Year-One survey (€RASS1) have been released.

® The first eEROSITA-based cluster cosmology (eFEDS) was out in 2023 (Chiu+23),
followed by the eRASSI1 results in 2024 (Gharardini+24).
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Help | Adva

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 12 Jul 2021 (v1), last revised 21 Sep 2021 (this version, v3)]

The eROSITA Final Equatorial-Depth Survey (eFEDS): X-ray Observable-to-Mass-and-Redshift

Relations of Galaxy Clusters and Groups with Weak-Lensing Mass Calibration from the Hyper Suprime-
Cam Subaru Strategic Program Survey

I-Non Chiu, Vittorio Ghirardini, Ang Liu, Sebastian Grandis, Esra Bulbul, Y. Emre Bahar, Johan Comparat, Sebastian Bocquet, Nicolas Clerc, Matthias Klein, Teng

Liu, Xiangchong Li, Hironao Miyatake, Joseph Mohr, Masamune Oguri, Nobuhiro Okabe, Florian Pacaud, Miriam E. Ramos-Ceja, Thomas H. Reiprich, Tim
Schrabback, Keiichi Umetsu

. Search...
ad I‘le > astro-ph > arXiv:2207.12429 .

Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 25 Jul 2022 (v1), last revised 28 Mar 2023 (this version, v2)]

Cosmological Constraints from Galaxy Clusters and Groups in the eROSITA Final Equatorial Depth
Survey

I-Non Chiu, Matthias Klein, Joseph Mohr, Sebastian Bocquet
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eROSITA Cluster Cosmology

® ¢ROSITA 1s an X-ray space mission (2019-2024) aiming to search for galaxy
clusters from all sky.

® The eROSITA all-sky survey has stopped due to the Ukraine War. Data from
Science Verification (eFEDS) and Year-One survey (€RASS1) have been released.

® The first eEROSITA-based cluster cosmology (eFEDS) was out in 2023 (Chiu+23),
followed by the eRASSI1 results in 2024 (Gharardini+24).
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Relations of Galaxy Clusters and Groups with Weak-Lensing Mass Calibration from the Hyper Suprime-
Cam Subaru Strategic Program Survey

I-Non Chiu, Vittorio Ghirardini, Ang Liu, Sebastian Grandis, Esra Bulbul, Y. Emre Bahar, Johan Comparat, Sebastian Bocquet, Nicolas Clerc, Matthias Klein, Teng
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Unravelling the Enigma of Dark Energy with eROSITA X-Ray

@ Cosmology: On the trail of a mysterious Telescope
fo rce in S pace SCIENCE - An initial study of dark energy with eROSITA X-Ray telescope indicates that it is uniformly distributed in space
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An initial study of dark energy with eROSITA X-Ray telescope indicates that it is
uniformly distributed in space and time.
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S. Miyazaki M. Strauss M. Takada

(NAOJ) (Princeton) (IPMU)

LIKIDSSELAS)
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0.050 0089 0.159 0.282 0.503 0.895 1.594 | 2.838 15.054WG000M
Galactic Extinction E(B-V)

® 8m telescope located at Maunakea, carrying out an optical and wide-field
survey (2016-2022)

® The deepest optical survey at achieved area ( ~ 1100 deg? and i ~ 26 mag)
with n. ... &~ 20 gals/arcmin?

® Uniqueness
= Depth + Area + Quality (seeing = 0.6 arcsec)

= The only WL survey capable of executing shear-selected cluster cosmology
13 AS Physics | 2024 Dec
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Weak-Lensing Shear-Selected Galaxy Clusters
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Astrophysics > Cosmology and Nongalactic Astrophysics

[Submitted on 17 Jun 2024]

Weak-Lensing Shear-Selected Galaxy Clusters from the Hyper Suprime-
Cam Subaru Strategic Program: l. Cluster Catalog, Selection Function and
Mass--Observable Relation

Kai-Feng Chen, I-Non Chiu, Masamune Oguri, Yen-Ting Lin, Hironao Miyatake, Satoshi Miyazaki, Surhud More,
Takashi Hamana, Markus M. Rau, Tomomi Sunayama, Sunao Sugiyama, Masahiro Takada
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Weak-lensing Shear-selected Galaxy Clusters from the Hyper Suprime-
Cam Subaru Strategic Program: Il. Cosmological Constraints from the
Cluster Abundance

I-Non Chiu, Kai-Feng Chen, Masamune Oguri, Markus M. Rau, Hironao Miyatake, Satoshi Miyazaki, Surhud More,
Takashi Hamana, Tomomi Sunayama, Sunao Sugiyama, Masahiro Takada



HSC WL Mass Maps
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https://arxiv.org/abs/2406.11966
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N(vi<v<vjii1)

Best-fit model

Observed N (v)
of 129 clusters

1 Chiu+24

Excellent description of the data!
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Excellent agreement with others except for 3 X 2pt at = 20
= systematics?
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Sloshing Cold Fronts (CFs) in Intracluster Medium of Galaxy Clusters
I-Hsuan Li (email: 126134314@gs.ncku.edu.tw)

Cold front properties:

1. Sharp surface brightness (Sx) edge

2. Density sharply decreases

3. Temperature increases abruptly

» Sloshing CFs are observed as multiple concentric CFs with subtle density and temperature contrasts at various radii near the
cluster center and are thought to be generated by gas sloshing.

— Contact discontinuities are generated between gases of different entropy originally at different places in the

cluster.

— The underlying physics of sloshing CFs and stripping CFs may differ and require further study.

Chandra X-ray image - Vikhlinin etal. 2001) | ! Sloshing CF
of A3667 . . ot !
A Density sharplyl 4 #y | Temperature Chandra X-ray image
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We divide the circlar region around the cluster into 12 sectors and perform X-ray surface brightness fitting and spectral
analysis to identify the Sx edges and measure the density and temperature contrasts across these edges.

Radial Surface Brightness Profiles

X-ray surface brightness (countss™' cm~2 arcsec ™)
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Future Work: We will identify which edges can be classified as cold fronts.

Radial Temperature Profiles Detected Sx Edges (Black arcs)
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Using Cross-Correlation Functions to Constrain the Host
Environment of Fast Radio Bursts  zijiavai, 1-non chiu

< M, ~> old
«x SFR > young’

The host environment of FRBs is unclear > Set FRB rate {
Motivation

and to compare these two scenarios.

Two kinds of mock
FRB catalogs

halo catalogs
from Takahashi et al.

» Mock galaxy
catalogs

Stellar mass = Stellar-to-Halo Mass

Methods Relation & Halo Occupation Distribution

Angular position > pNFW

skewed (in Macquart et al. )

SFR > star-forming fraction & star Gaussian (in Hashimoto et al.)

formation main sequence

DM->{
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Particle Physics Lab (PI: Chuan-Hung Chen)

J Research interest: The standard model (SM) has been established as a very
good effective theory at and below the electroweak scale. However, certain
empirical observations still await resolutions, such as the origin of neutrino
mass and the nature of dark matter (DM), which constitutes around 27% of
the universe's total energy. Based on these unsolved 1ssues and the anomalous ¢ - E
processes indicated by experiments, we focus on the following research
topics:

o Scotogenic model: Proposed by E. Ma in 2006, this model explains the origin
of neutrino mass through a one-loop mechanism. The particles mediating the
loop carry a dark charge, making them potential candidates for dark matter.
Building on the concept of scotogenesis, we explore not only the generation
of neutrino mass but also its implications for lepton-flavor-violating
(LFV) processes and its potential to address the muon g-2 anomaly.

o Leptogaurk model: Unexpectedly large branching ratios (BRs) of
B — D" t ¥ have been reported by BaBar, Belle, and LHCb. Additionally,
Belle II recently reported a 2.7¢ deviation from the SM prediction in the BR

for B — K vv. It is of interest to simultaneously explain both excesses in a
unified model. It is even more challenging 1f the model can also be used to fit
the neutrino data. Since leptoquarks, which mediate interactions between
quarks and leptons, provide peculiar couplings to quarks and leptons, we

explore the above 1ssues 1n the framework of leptoquark models.
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Theoretical Cosmology Lab (PI: Shun-Pei Miao)

Large Quantum Loop Effects during Primordial Inflation

* MMC scalars & gravitons are massless & no classical conformal invariance = bigger chance
to interact with classical particles=® large loop effects
* Massless: virtual particles live longer than massive ones
* no classical conformal invariance: emergence rates are not suppressed
* Space-time expansion: live longer than those in flat space-time

* Particular part of quantum loop effects: leading logarithms (leading logs)

* From loops of massless particles =» non-analytical (not affected by finite parts of local counter-terms) =
not affected by non-renormalizability of current Q.G. =» low energy effect field theory

* Time(or space)—growing effects: overwhelm the smallness of loop counting parameters GH?>~10"11 =
effects become physically significant or even non-perturbatively strong
* GH?~1071': bounded by measured scalar primordial power spectrum & upper bound of the tensor-scalar ratio

* Potential consequences:
 Survive at surface of last scattering & might twist cosmic microwave background radiations
* penetrate to very late time to provide a seed for non-local modification of gravity

Two issues for capturing leading logs -- Q.FT. = non-trivial even at 1-loop on de

Sitter or FRW

* First issue: obtain leading logs from (1) the tail part of the graviton propagator (2) renormalizations
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* (1) Generalize Starobinsky’s technique from scalar models to those involving Q.G =
1. Obtaining leading logs from the tail part of the graviton propagator without Q.F.T. computations
2.  Allow us to re-sum leading logarithms from all loop orders when perturbations break down

* Reduce the Q.G. models (with derivative couplings) to the original scalar model without derivative
interactions = induced effective potentials =» then apply Starobinsky’s technique

* (2) part of leading logs from incomplete cancellations between primitive UV divergence and counter-terms

e Succeed in Yukawa, SQED, non-linear sigma models, Q.G. induced by MMC scalars etc. by combing a variant
of Starobinsky’s technique with a variant of Callan-Symanzik equation

* Need to check for pure Q.G. (Q.G. induced by gravitons)

» 2" jssue: gauge issue

* No well-defined S-matrix on de Sitter or FRW (unlike the gauge-independent S matrix in flat space-time)
* Purge gauge dependence at the level of linearized effective field equations (1Pl 2-point function)

* By including correlations from sources and observer & not taking the states to asymptotically early & late
times

* Succeed in MMC scalars induced by GR & EM induced by GR in flat space-time = Generalize to de Sitter



