

Toward real-time quantum state tomography for the squeezed state with machine learning

Hsien-Yi Hsieh, Yi-Ru Chen, Hsun-Chun Wu, Yao-Chin Huang,

Chien-Ming Wu and Prof. Ray-Kuang Lee

National Tsing Hua University, Taiwan

We participate in the development of frequency dependent squeezing (FDSQZ) which is led by Dr. Matteo Leonardi in National Astronomical Observatory of Japan

Sensitivity of KAGRA is limited by Quantum noise

• KAGRA is designed to operate at cryogenic temperatures to reduce thermal noise.

KAGRA sensitivity

• To reduce this vacuum noise, using the squeezed light is a promising approach.

Kentaro Somiya, "Quantum noise reduction techniques in KAGRA" The European Physical Journal D volume 74, Article number: 10 (2020)

Broadband Quantum noise reduction by frequency dependent squeezed light

M. Evans et. al. Physical Review D, 2013, 88(2):57-61.

This frequency dependent squeezing could be realized by inject the frequency independent state generated by OPO cavity into a long filter cavity. PHYSICAL REVIEW LETTERS 124, 171101 (2020)

Editors' Suggestion

Featured in Physics

Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors

Yuhang Zhao[®],^{1,2} Naoki Aritomi,³ Eleonora Capocasa[®],^{1,*} Matteo Leonardi,^{1,†} Marc Eisenmann,⁴ Yuefan Guo,⁵ Eleonora Polini[®],⁴ Akihiro Tomura,⁶ Koji Arai,⁷ Yoichi Aso[®],¹ Yao-Chin Huang,⁸ Ray-Kuang Lee[®],⁸ Harald Lück[®],⁹ Osamu Miyakawa,¹⁰ Pierre Prat,¹¹ Ayaka Shoda[®],¹ Matteo Tacca,⁵ Ryutaro Takahashi[®],¹ Henning Vahlbruch,⁹ Marco Vardaro,^{5,12,13} Chien-Ming Wu[®],⁸ Matteo Barsuglia,¹¹ and Raffaele Flaminio^{4,1} ¹National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan

- First demonstration of frequency dependent squeezing by using 300m filter cavity to rotate squeezing ellipse below 100 Hz.
- More than 3dB squeezing at high frequency, about 1dB squeezing at low frequency
- Target 9 dB squeezing

Dashed line: squeezing with less loss Solid line: squeezing with more loss and imperfect detection

Figure Credit: John Miller

- Not only the squeezing, but also the anti-squeezing will be injected into the interferometer and detector.
- 10 dB impure squeezing reduces shot noise ,but contributed 20 dB to the radiation pressure noise.

Quantum state tomography: Optical Homodyne Tomography

REVIEWS OF MODERN PHYSICS, VOLUME 81, JANUARY–MARCH 2009

Continuous-variable optical quantum-state tomography

A. I. Lvovsky*

Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4

M. G. Raymer[†]

Department of Physics and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403, USA

(Published 16 March 2009)

Reconstruction Algorithms:

Inverse Radon transformation

- $W_{\rm Det}(Q,P) = \frac{1}{2\pi^2} \int_{0}^{\pi} \int_{-\infty}^{+\infty} \Pr(Q_{\theta},\theta) \times K(Q\cos\theta + P\sin\theta Q_{\theta}) \, dQ_{\theta} \, d\theta$
- O The oldest and simplest tomographic estimator.
- O The probability distribution $pr(Q_{\theta}, \theta)$ is the integral projection of the Wigner function.
- O Works well only when the statistical and systematic errors are negligible.
- X May deliver an unphysical density matrix e.g., negative eigenvalues or probabilities greater than 1.

Maximum Likelihood estimation (MLE)

- O The most popular technique for dealing with the problems of inversion linear transformation.
- O Restricting the domain of density matrices to the proper space.
- O Searching for the probability distribution which maximizes the likelihood of the inputs data
- O Guarantee the state to be theoretically valid
- X It can't identify the quantum state uniquely. Inadmissible for fidelity, mean squared error.

"Maximum likelihood quantum state tomography is inadmissible" https://arxiv.org/abs/1808.01072 (2018).

Bayesian mean estimation (BME) " Optimal, reliable estimation of quantum states " New Journal of Physics. 12 (4): 043034

Machine learning for squeezed state tomography: SQ Learner

Machine SQ Learner vs Max. Likelihood Estimation (MLE)

< 1s to reconstruct

The fidelity F for two states (density matrix) is given by

few minutes to reconstruct

$$\mathcal{F}(|\psi_1\rangle, \hat{\rho}_2) \equiv \langle \psi_1 | \hat{\rho}_2 | \psi_1 \rangle = \operatorname{tr}[|\psi_1\rangle \langle \psi_1 | \hat{\rho}_2]$$
$$= 2\pi \iint W_1(x, p) W_2(x, p) dx dp$$

Reconstruction fidelity as a function of degree of squeezing and number of quadrature measurements.

The reconstruction is precise if Fidelity is equal to 1

Next: FPGA Acceleration of Convolutional Neural Networks

Reducing the loading of CPU ٠

٠

Applications of real-time tomography in squeezed state:

- Monitor the purity of the quantum state.
- The purity of a normalized quantum state is a scalar defined as

$$\gamma \, \equiv \, {
m tr}(
ho^2)$$
 , ${
m 0} < \gamma \leq {
m 1}$

 $\gamma = 1$ for pure squeezed state: degrees of squeezing = anti-squeezing

• Monitor the properties of quantum states in realtime, and study the corresponding dynamic behaviors.

Vol. 7, No. 5 / May 2020 / Optica

Dtica Experimental quantum homodyne tomography via machine learning

E. S. TIUNOV,^{1,2,†} V. V. TIUNOVA (VYBOROVA),^{1,†} A. E. ULANOV,¹ A. I. LVOVSKY,^{1,3,*} AND A. K. FEDOROV^{1,2,4}

¹Russian Quantum Center, Skolkovo, Moscow 143025, Russia
 ²Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
 ³Department of Physics, University of Oxford, Oxford OX1 3PG, UK

Based on an artificial neural network known as the Restricted Boltzmann machine (RBM)

Reconstruction of Schrodinger cat states

Machine learning are popular for gravitational-wave data analysis

Physics Letters B 803 (2020) 135330

Real-time detection of gravitational waves from binary neutron stars using artificial neural networks

Plamen G. Krastev

Harvard University, Faculty of Arts and Sciences, Research Computing, 38 Oxford Street, Cambridge, MA 02138, USA

Algorithm: Convolutional Neural Network (CNN)

 Using an artificial neural network to identify gravitational-wave signals

PHYSICAL REVIEW D 102, 083024 (2020)

Robust machine learning algorithm to search for continuous gravitational waves

Joe Bayley[®], Chris Messenger[®], and Graham Woan[®] SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom

https://arxiv.org/abs/2009.04088

Deep learning for gravitational-wave data analysis: A resampling white-box approach

Manuel D. Morales,^{1,*} Javier M. Antelis,^{2,†} Claudia Moreno,^{1,‡} and Alexander I. Nesterov^{1,§}

¹Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara, Jalisco, 44430, México ²Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona 2514, Zapopan, Jalisco C.P. 45138, México (Dated: September 10, 2020)

https://arxiv.org/abs/2011.04418

Improved deep learning techniques in gravitational-wave data analysis

Heming Xia, 1 Lijing Shao, $^{2,\,3,\,\ast}$ Junjie Zhao, 4 and Zhoujian Cao^5

¹Department of Astronomy, School of Physics, Peking University, Beijing 100871, China ²Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China ³National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China ⁴School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China ⁵Department of Astronomy, Beijing Normal University, Beijing 100875, China (Dated: November 10, 2020)

Thank you for your attention

Dr. Y.C. Huang Mr. S.C. Wu Dr. D.S. Tsai Ms. Y.R. Chen

C.M. Wu chwufo@gmail.com Prof. R.K. Lee

2019/08/22 23rd Face to Face Meeting @ University of Toyama