Astrophysics with joint analysis of multi-messenger observations

Ik Siong Heng¹

Laurence Datrier¹, Fergus Hayes¹, Martin Hendry¹, Albert Kong², Gavin Lamb³, En-Tzu Lin², Surojit Saha², John Veitch¹, Daniel Williams¹, Michael Williams¹

> ¹University of Glasgow ²National Tsing Hua University ³University of Leicester

7th KAGRA International Workshop

Institute for Gravitational Research

Academics

Prof. Sheila Rowan

Prof. Giles Hammond

Dr Chris

Messenger

Prof. Ik Siong

Heng

Prof. James

Hough

Dr John Veitch

Prof. Harry

Ward

Prof. Ken Strain

Dr Eric Oelker

Prof. Graham Woan

Dr Christopher

Berry

Prof. Martin Hendry

Dr Iain Martin

Outline

• Brief introduction

- Short gamma-ray burst (sGRB) jet structure inference via joint analysis with gravitational wave observations
- Inferring kilonova parameters including BNS merger time
- Additional collaborations presented in talks by
 - En-Tzu Lin: X-ray afterglow joint analysis
 - Surojit Saha: autoencoders for kilonova light curves

Multi-messenger astronomy with GW170818

Joint GW-GRB inference

- We previously showed that, for joint short GRB-BNS detection, we can obtain the short GRB intrinsic luminosity using GW information: Fan, Messenger & Heng PRL (2017) arXiv:1706.05639
- We have also demonstrated that the short GRB luminosity function can be accurately determined from a population of joint short GRB-GW observations of BNS mergers

Inferring sGRB jet structure

- We can combine the information from population of GW observations of BNS with the corresponding GRB observation to see to investigate the GRB jet structure
- To demonstrate this, we consider two **observed** structured jet models:
 - Gaussian jet (GL)
 - Power law (PL)
- We simulate a BNS merger population and draw their corresponding GRB luminosities based on the assumed jet structure model
- Details of hierarchal Bayesian analysis in F. Hayes *et al.*, ApJ 891 (2020)

Jet structure models

$$y(\theta) = e^{-\frac{1}{2} \left(\frac{\theta}{\theta_w}\right)^2}$$

$$y(\theta) = \begin{cases} 1 & \text{if } 0 \le \theta \le \theta_{in}, \\ \left(\frac{\theta}{\theta_{in}}\right)^{-k} & \text{if } \theta_{in} < \theta \le \theta_{out}, \\ 0 & \text{if } \theta_{out} < \theta. \end{cases}$$

Fix k = 2 for this analysis.

Bayesian model selection

• Bayes' theorem where for desired model, *M*_A, and some observational data, *D*, we have

$$posterior \\ p(M_A|D,I) = \frac{p(D|M_A,I) \times p(M_A|I)}{p(D|I)} \\ \frac{p(D|I)}{evidence}$$

- The posterior probability represents the state of our knowledge of the model ("the truth") in light of our observed data
- If we have a competing model or hypothesis, we use the ratio of the posterior probabilities for each model

$$\frac{p(M_A|D,I)}{p(M_B|D,I)} = \begin{bmatrix} p(M_A|I) \\ p(M_B|I) \end{bmatrix} \times \begin{bmatrix} p(D|M_A,I) \\ p(D|M_B,I) \end{bmatrix}$$
prior odds Bayes factor

• If Bayes factor > 1, M_A is preferred. If Bayes factor < 1, M_B is preferred

Model comparison

- We calculate the Bayes factor for two datasets, each with 100 BNS detections
 - Dataset D_{GJ} universe of sGRBs with Gaussian jet structures
 - Dataset D_{PL} universe of sGRBs with power-law jet structures

Parameter estimation

• We can also estimate the jet structure parameters using the correct model

ÍGR

Parameter estimation

• We can also estimate the jet structure parameters using the correct model

- Gravitational wave observations have provided us with an estimate of the rate of BNS and NSBH mergers.
- Can we combine these rates with the rate of sGRBs to learn about the jet structure?
 - Selection effects are included when calculating BNS and NSBH rates from GW observations
 - Selection effects for sGRB rate are a little tricky since it is also a function of the jet structure
- Previous work assuming top-hat jets: Williams et al., ApJ 858 (2018)
- For structured jets, we base our analysis on the formalism laid out by K. Mogushi *et al.*, ApJ 880 (2019)
- We construct a likelihood which is a Poisson distribution with the number of observed sGRBs, *N*_{obs}, as the distribution mean
- Aim to evaluate Bayes factor comparing different jet structure models; can also obtain jet structure model parameters

 The number of observed sGRBs is related to a redshift dependent sGRB rate R_{GRB}(z) by

$$N_{\rm obs}(\theta_M) = T\hat{F}R_0 \int_0^{z_{\rm max}} \int_{-1}^1 \int_{L_{\rm th}(\theta_M, z, \cos\theta)}^{\infty} \frac{R_{\rm GRB}(z)}{1+z} \frac{dV(z)}{dz} \mathcal{N}(L) dz d(\cos\theta) dL$$

• The effect of the jet structure enters via a luminosity threshold used to determine detection

$$L_{\rm th}(\theta_M, z, \cos \theta) = 4\pi d_L(z)k(z)F_{\rm min}\frac{y_{M,0}}{y_M(\theta)}$$

• Also,

 $R_0 = \epsilon_{\rm BNS} R_{\rm BNS} + \epsilon_{\rm NSBH} R_{\rm NSBH}$

- where ε_{BNS} is fraction of BNS mergers that produce a GRB and similarly for eNSBH
 - assume $\epsilon_{BNS} = 1$, ϵ_{NSBH} is unknown (typically 0.1-0.3)
- BNS/NSBH rates taken from GWTC-1

 $N(z, \cos\theta, L)$: sGRB number density z: redshift θ : viewing angle L: intrinsic luminosity *L*_{th}: luminosity threshold $R_{\text{GRB}}(z)$: normailised sGRB rate where $R_{\text{GRB}}(0) = 1$ R_0 : sGRB rate at z = 0T: observation duration \hat{F} : time-averaged detector response V: redshift volume $y_{M}(\theta)$: jet structure for model M yM,0: θ_{M} : jet structure model parameters d_L : luminosity distance k: k-correction factor F_{\min} : minimum flux required for detection

• Test case with simulated number of observed sGRBs for validation

Gaussian jet structure where θ_c is the width of the gaussian

- Jet structure function and rates used to simulate the number of observed sGRBs
- This simulated value is combined with GW priors on BNS and NSBH rates to obtain parameter posteriors

• Test case with simulated number of observed sGRBs for validation

Kilonovae

- We expect a number of BNS to be subthreshold (edge-on) or single detector events - an associated EM counterpart could confirm one of these detections as an event.
- We expect a number of untriggered kilonova detections associated with such subthreshold or one detector events. (Setzer *et al.*, 2019)
- Depth and field of view of LSST searches make it ideal for serendipitous kilonova discoveries

L. Datrier et al., in prep.

Methdology

- We use the 2017 Kasen models to simulated observed light curves, and try to recover model parameters for varying cadences
- Two components (red, blue) with 3 ejecta parameters each:
 - Ejecta velocity
 - Ejecta mass
 - Lanthanide fraction
- 1 magnitude uncertainty on models

- Models on evaluated on a grid expanded with Gaussian Process Regression.
- Simulate apparent magnitude for different types of kilonovae from time resolved spectra, focusing at g,r,i bands
- Use LSST single exposure magnitude limits to determine when light curve is no longer detectable
- Consider different cadences and observing start times (time of first observation in days most-merger)

Test with AT2017gfo

- Full parameter estimation on truncated AT 2017 gfo light curves for g,r,i DECam data.
- Start of observations t = 1.45 days after merger
- Recovered t = $1.21^{+1.14}_{-0.82}$ days

NASA/ESA

Summary

- Multi-messenger analysis of joint observations can uncover astrophysical insight which may not be accessible otherwise
 - population of GRB-GW observations will allow us to probe jet strucure
 - joint analysis of GRB, GW, X-ray,... observations will improve parameter estimation for individual events
- Kilonova model uncertainties have a significant impact on the ability to determine the merger time
 - Other factors include number of observing bands, kilonova brightness,...
- Multi-messenger analysis can also improve inference on distance, inclination,... and lead to better interpretation (eg. cosmology)

