Status of KAGRA calibration toward O4 KAGRA Calibration subgroup Dan Chen on behalf of the KAGRA collaboration

2020/12/19 KAGRA International Workshop

- What is "calibration" for a gravitational wave telescope?
 - h(t) reconstruction, calibration systems (Pcal, Gcal)
- What we did in O3GK and plant for O4
- Gcal
- Pcal
 - Pcal in KAGRA
 - Status of Pcal improvement toward O4

Outline

Simplified GW telescope

Work of calibration(CAL) team

How do we perform this conversion (= h(t) reconstruction)?

Schematic view of h(t) reconstruction Control loop in O3GK h(t) Interferometer system. Digital filter Coil-magnet actuator Aetmx AETMY

In order to keep the interferometer at operational and sensitive condition, control loops are performed in the

Schematic view of h(t) reconstruction Control loop in O3GK h(t) reconstruction Verr С h(t) AETMX model Aetmx | Vctrl AETMY AETMY model We need to estimate parameters in A and C. To do this, we need precise actuators to make known input.

5

Main works of calibration team

Making precise calibration systems

Making pipelines to provide h(t) data

https://gwdoc.icrr.u-tokyo.ac.jp/DocDB/0120/G2012094/001/c20.pdf

Related talk:

Honglin Lin (11:25-, today)

"Study of frequency domain analysis method to estimate calibration errors"

Precise actuators as calibration system

- Laser wave length -> not enough accuracy
- Coil magnet actuator -> not enough accuracy
- Photon calibration system (Pcal) based on radi can use now
- Gravity field calibration system (Gcal)

Photon calibration system (Pcal) based on radiation pressure -> most accurate calibration system we

We can use radiation pressure of laser to push the TM of KAGRA

What we did in O3 (observation run 3 with GEO = O3GK) What we will do toward O4 $\,$

Pcal	Gcal
Both of Xpcal and Ypcal was installed. Xpcal worked during O3GK.	Design and preparation.
Make Xpcal and Ypcal work o meet the O4 requirements.	Experiments and developments in labs. We will install one at Xend we can.

Status of gravity filed calibration system = Gcal in KAGRA

Rotating mass distribution makes periodic gravity field change on the test mass. This can be an independent calibration system from any other systems. Status:

Most of the hardware components are in KAGRA tunnel now. Anchor holes for this Gcal have already made.

Related talk:

Hsiang-Yu (12:05-, today) "Improvement of calibration error method with higher order harmonics"

Gcal

Tungsten mass

Photon calibration system = Pcal

Principle:

Applying force on a test mass by using radiation pressure.

Points to be considered:

- We need to know the P value precisely
- We need to monitor IF during observation run. The radiation pressure noise caused by Pcal laser should be lower than KAGRA sensitivity.
- We don't want to inject the laser beam on the center to avoid internal mode excitation by Pcal laser and local deformation.
- We don't want to rotate TM by the Pcal laser

Rotation of TM

- measure laser power
- domain.
- AOMs enable laser power stabilization.
- We inject 2 laser beams on TM. => We can avoid to rotate TM by Pcal laser beams

Error of P is most significant on calibration error.

Photon calibration systems = Pcal in KAGRA

Tx module

- Generate 2 beams
- Power stabilization
- Make periodic excitation of power
- Precise measurement of input laser power

Rx module

Precise measurement of output laser power

We can use measured power in both modules to estimate power on the test mass.

XPcal and YPcal were installed

XPcal worked

- DARM transfer function measurements before/after O3GK were performed.
- Calibration lines were injected continuously during the observation run.
- The noise level was lower than the sensitivity of KAGRA in O3GK.

Calibration lines

Succeeded items in O3GK

Laser position monitor system(Tcam) worked continuously.

- YPcal did not work because an AOM was broken.
- Pcal noise can be bigger than KAGRA O4 sensitivity.
- Pcal had a 3% error. (Error of h(t) will be larger than it)
 - Variation of measured optical efficiency (~1.7%)
 - Variation of integration sphere calibration factors (~2.5%)
 - Fluctuation of laser beam positions on the ETM (~1%)
- We need improvement of alignment tools

Pcal improvement toward O4 ~What we found in/after O3GK~

Alignment tools improvement

We replaced the broken AOM after O3GK. After beam alignment, YPcal will be ready for use.

Repair YPcal

- One of AOMs in YPcal was broken before O3GK.
 - We could not use YPcal in O3GK.

Replaced AOM

Three "O3 data"s are typical noise in O3GK.

- We could not raise control gain because of unknown reason(s)
- Noise without control was very high.

- Laser source itself is clean. Electronics make the noise.
- It seems the original noise can be suppressed by 10dB if we connect circuit GND well.
- Cutting high frequency noise into stabilization loop can improve the noise by 15dB?

These are still under investigation and discussion.

 10^{3}

Error improvement

O3GK		
Error source	Effect on x(w) [%]	
Laser power measurement	2.5	
Optical efficiency measurement	1.7	
Laser position fluctuation	0.99	
Other	0.48	

3% error in total (Pcal hardware error)

Related talk: Koki Ito (12:05-, today) "Calibration of PCal Laser Power with O3GK"

Displacement caused by Pcal:

Estimated power on TM $P_m = f(P_{TX1}, P_{TX2}, P_{RX}, e_{T1}, e_{R1}, e_{T2}, e_{R2})$

Laser position on TM observed by camera

Measurements by integration spheres are the main error source

Possible cause 1: Measurement process has some problem. (Warming time before measurement was too short or others.) Possible cause 2: Scattered light in Tx module

Alignment tools improvement

Install picomotors on mirrors before long path

Newport 8823-UHV

Replace the mirror receives 2 beams with a bigger mirror. This also improves reliability.

Summary of Pcal improvement toward O4

	Repair YPcal	Noise improvement	Error improvement	Alignment tools improvement
Issue	An AOM was broken before O3GK run.	Pcal laser noise is close to O3GK sensitivity, which is higher than O4 target sensitivity.	Pcal has a 3% error, which can be improved.	Difficulty of beam alignment.
Goal	Make the YPcal work.	Noise lower than O4 target sensitivity.	Lesser than 3% error. (Target error value is under discussion)	Reduce alignment wor time.
Current Status	Repaired AOM. Performed beam alignment roughly in Tx module.	We found some candidates for improvement (25dB?)	We are preparing for updating calibration procedure and scattered light management.	80% of the stuff we ne have already been prepared.
Remaining tasks	Beam alignment of total system.	Try the candidates with real Pcal system. (Maybe more noise hunting)	Check the improvement.	After the remained stu arrived, we will instal picomotors and big siz mirrors.

Summary and related talks

- In order to make h(t):
 - We need make pipeline, which contains IF models and estimated/measured parameters
 - We need calibration system(s), which provide precise reference signals. We use these signals to calibrate IF signal.
- In KAGRA, we (will) have Pcal and Gcal as the calibration system.
- In O3GK, XPcal worked. Toward O4 we need improvements:
 - Repair YPcal, noise improvement, error improvement, and alignment tools improvement
 - No major delays at this time. Basically, we will finish preparation works by March, and start install from April.
- Related talks:
 - Honglin Lin (11:25-, today) "Study of frequency domain analysis method to estimate calibration errors" Hsiang-Yu (12:05-, today) "Improvement of calibration error method with higher order harmonics" Koki Ito (12:05-, today) "Calibration of PCal Laser Power with O3GK"

End

Error improvement

Possible cause 1: Measurement process has some problem. (Warming time before measurement was too short or other.)

Time dependance of IS calibration output (GSK/WSK) @Toyama Univ

We also will compare our calibration procedure with LIGO.

Possible cause 2: Scattered light in Tx module

Output from an integration sphere

Alignment tools improvement

Because the space is limited in chamber, we need to move mirrors a little to make space for picomotor.

Laser path in chamber

Checked whether the laser hit tube structure

Ray tracing for redesigning mirror positions.

Laser path in tube

Checked the mirrors are enough size.

