

Acoustic injection in the KAGRA site

2020-12-19, 7th KAGRA International Workshop Tatsuki Washimi (NAOJ) on behalf of the KAGRA PEM

Physical Environmental Monitors (PEM)

GW detector is exposed to much environmental noise, such as :

- mechanical vibration, seismic motion
- acoustic field
- magnetic field, electrical noise, RF

It's important to ①measure, ②reduce, ③shield, and ④subtract them for the GW observation.

Details of KAGRA PEM was presented by T.Yokozawa [ID29]

 \leftarrow We held "LVK PEM meeting" in KAGRA.

2/14

https://www.icrr.u-tokyo.ac.jp/~washimi

Two types of acoustic injection

Two types of acoustic injection

Noise Projection by PEM Injection

A technic to evaluate the ambient environmental noise in the GW channel.

We verified it after the O3GK

I.Fiori, T.Washimi et.al., Galaxies 2020, 8, 82

10% percentile magnetic NP

Single Line Acoustic Injection

At first, we checked the hypnosis by single line injection.

also checked for other frequencies

New Model for the PEM Injection Analysis

We developed a new model including frequency conversion.

Response function is derived by swept sine injection.

$$R(f, f') = \frac{S_{\text{inj}}(f) - S_{\text{bkg}}(f)}{P_{\text{inj}}(f') - P_{\text{bkg}}(f')} \cdot \frac{1}{\Delta f'}$$

PEM Projection for the Background Data

Acoustic noise propagated to the strain sensitivity was dominant about 200-400 Hz.

- KAGRA O3GK Noise budget -> K.Kokeyama [ID36]
- Offline noise subtraction -> J.Kume [ID41]

PEM Projection for the "Pure Acoustic Noise"

Check the validity of this analysis by the broadband injected data.

"Pure acoustic noise" (excess in the interferometer signal) is almost consistent!

Two types of acoustic injection

Reverberation time for an Impulse sound

"RT60" is a parameter to explain the acoustic character of a room, widely used in the field of the Acoustic engineering

$$SPL(t = \mathbf{RT60}) - SPL(t = 0) = -60 \mathrm{dB}$$

Eyring's formula:

RT60 = 0.16 s/m ×
$$\frac{v}{S \log_e (1 - \alpha)^{-1}}$$

 $SPL = 10 \log_{10} (P_{\text{sound}}/P_0)^2$ $P_0 = 20 \mu \text{Pa}$

V : volume of the room S : total area of room surface

 α : absorptance on surface

I/

Schroeder frequency & Newtonian Noise

Schroeder frequency

<u>M. R. Schroeder, J. Acoust.</u> <u>Soc. Am **34**, 1819 (1962)</u>

$$f_s = 2000 \sqrt{\frac{RT60}{V}}$$

 $f > f_s$: Diffuse case, $\lambda_{sound} \ll L_{room}$ $f < f_s$: Modal case, $\lambda_{sound} \simeq L_{room}$ \succ Induce the Infrasound NN

> We can estimate the cut-off frequency of the infrasound NN toward future observation or G3.

Measurements in KAGRA site

Results of RT60 and Schroeder frequency in KAGRA

Frequency dependence is coming from the absorptance on surface

RT60 = 0.16 s/m ×
$$\frac{V}{S \log_e (1 - \alpha)^{-1}}$$

By using the plateau,

	<i>RT</i> 60 [s]	<i>V</i> [m ³]	<i>f</i> _s [Hz]
Center	~ 1.0	25,000	13
X/Y end	~ 1.2	10,000	22
X/Y arm	~ 2.0	46,000	13

- We performed the same measurements in Virgo.
- The journal paper is in preparation.

Other activities for the Newtonian Noise in KAGRA

KAGRA PEM is also working on the other types of Newtonian noise in underground environment.

Seismic NN

Water fluid NN

Summary of KAGRA Acoustic Injection

1 Continuous wave

✓ We investigated the response of KAGRA interferometer to the acoustic field.
➢ a part of <u>O3GK Noise budget</u>

2 Impulse wave

 ✓ We evaluated the reverberation time in KAGRA observatory.
➢ investigation of a <u>Newtonian noise</u>

