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Background

» Gravitational wave telescopes have a large variety of glitch sources with corresponding time-frequency characteristics.

* Itis important to classify the time-frequency characteristics around glitches.

» We can get statistical information for each source of glitch to take some measures.

Different types of glitch, Blip (left) and Chirp (left)

» Applying Supervised Learning based on deep learning [1] to glitch have some aspects of effective, or issues (#1, #2)

#1 Issues in general (glitch classification) #2 Issues depending on Supervised Learning

» We don’t know the true number of glitch sources. » Highly dependent on skill of human to labeling.

, , , , (requires a lot of work for labeling)
» Glitch has different frequencies (occur) depending on

its source (Imbalanced data). » Subclasses or abnormals may be included.

We need some human-independent system for classification overcoming #1, #2



Overview of our system

» We develop a system to classity glitches based on Unsupervised Learning.

» We tested the system by applying to Gravity Spy Dataset [1].

Enocder is trained by VAE
Classifiers are trained by IIC
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Architecture of our system

Gassification strategy \

1. Generate features from glitch set using Variational Autoencoder (VAE) [2]

2. Roughly classify features into arbitrary number of classes (K, W) by multiple
weak classifiers ( x M) using Invariant Information Clustering (11C) [3]

» Labeled Set : Using K classes, M patterns
» Over-labeled Set (optional) : Using W ( > K) classes, M patterns

3. Ensemble (Consensus) multiple clustering results (preliminary)

» Golden Set : Reliable glitches with reliable labels

\ « Abnormal Set : Unreliable glitches J
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Consideration from Gravity Spy Dataset

 Gravity Spy Dataset have 22 types of glitches labeled by unique pipeline (human with CNN) [1].

Consideration

| "l group-1
» Abnormals may be included
» Certain classes may be divided into multiple subclasses
group-2
- Some classes have too much diversity JLc Sl 2,
We designed the system to overcome these issues ! group-3
like Repeating_Blips

others / abnormal

Glitches in Extremely_Loud class can divide into subclasses



Overview of our system

» We develop a system to classity glitches based on Unsupervised Learning.

Enocder is trained by VAE
Classifiers are trained by IIC
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Overview of results

cosine similarity matrix reordered at epoch 0
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Overview of our system

» We develop a system (Fig. 1) to classify glitches based on Unsupervised Learning.

Gassification strategy \
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weak classifiers ( x M) using Invariant Information Clustering (11C) [3]

» Labeled Set : Using K classes, M patterns

classified into W x M classes (optional)
W>K

classified into K x M classes

< « Over-labeled Set (optional) : Using W ( > K) classes, M patterns
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3. Ensemble (Consensus) multiple clustering results (preliminary)
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* Golden Set : Reliable glitches and with hyper graph with reliable labels

\ * Abnormal Set : Unreliable glitches J
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Variational Autoencoder (VAE) [2]

« Unsupervised or semi-supervised generative model by assuming, input data Z is generated by latent features # (our system use unsupervised model)

+ We can generate disentangled features 2 ~ N (0,I) from input data ®

Architecture

» Encoder %(z | ) infer latent features Z from input data = . .
fit latent features to gaussian

+ Decoder P¢(Z | z) generate reconstructed image Z from latent features 2
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Result-1: Latent features generated by VAE

q(=) at epoch 300
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subclasses such as Ext.L, Vio.M.
e The data distribution for each class partly overlaps with the
others, but it is generally separated.

e \We found that differences in the statistical variance between

the classes by visualizing the distribution of the data,

2D latent features by t-SNE with true labels (Gravity Spy)



Invariant Information Clustering (11C) [3]

» Unsupervised classifier by maximize mutual information of classification results from two different types of features 2 2

» We can roughly classify features to arbitrary number of classes & or /and W > K, and can get different kinds M of results.

Architecture "M
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[3] Xu Ji, et.al, “Invariant Information Clustering for Unsupervised Image Classification and Segmentation”, arXiv:1807.06653v4 (2019).
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Result-2: Classify features by IIC

q(=) labeled by head 0 at epoch 300
q(=) labeled by head 3 at epoch 300
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extent with imbalanced data.
o (lassification performance of classes with
extremely small numbers of data is poor

(e.g. Chirp).

(a) classifier-0 (b) classifier-1

2D latent features with classifiers (upper), confusion matrix (lower)
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Ensemble (preliminary)

» Concatenate outputs from all weak classifiers to make hyper graph

» (Calculate similarity matrix between all test data

classifier-1 classifier-2

Clustering outputs of weak classifiers

—_—

calculate similarity

hyper graph
similarity matrix between all data
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Result-3: Ensemble outputs of all weak classifiers (preliminary)

cosine similarity matrix reordered at epoch 150
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Consideration & Future works

Consideration of results

» We could get class-dependent features from Gravity Spy Dataset by using VAE.
» We could see the different kinds of results from IIC weak classifiers.

» We could get similar glitches of any sample by ensemble all outputs from [IC weak classifiers.

Future works

» Consider methods to improve ensemble clustering.

* Apply our system to KAGRA data and evaluate its performance.
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