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Continuous Gravitational Waves (CGWs) 
1) Duration longer than the observational period 
2) Small change rate of the frequency 
3) Almost constant amplitude

cite: wikipedia

Possible source of CGWs 
・Rotating neutron stars (pulsars) 

Inner structure of NS 
・Axion cloud around BH (“gravitational atom”) 

Existence of axion particle 
・Small-mass BH binaries 

Existence of primordial BHs

e.g. Sieniawska & Bejger (2019)

e.g. Arvanitaki et al (2010)

e.g. Carr et al (2016)



Phase modulation by detector motion

r(t)
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Sun
Detector on the Earth

source Doppler modulation

Signal model

Observed signal depends on the source location.

h(t; fgw,ns) = h0e
i�(t;fgw,ns)
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Matched Filtering (MF)

The matched filtering is optimal, 
but not realistic.

SNR

For all-sky search, 
we need calculate SNR for each grid points on the sky.

Tcomp ⇠ 2.2⇥ 108 sec

✓
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1PFlops
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( fgw=100Hz, Tobs=107sec, sampling rate 1024Hz )

⇢MF(fgw,ng) /
Z Tobs

0
dt s(t) · h0e

i�(t;fgw,ng)
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Computational time



What we did is …

We combine excess power method and deep learning method, 
and propose the new detection method of monochromatic waves. 

Our method can reduces a computational time 
by assisting the coherent method.



Method

・Use less number of grid points than the case of coherent MF.

�(t) = 2⇡fgw⇣ + ���(t)
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Residual phase

���(t) ⇠ ���(⇣) ⇠ 2⇡fgw
RES�✓

c
cos(⌦�⇣)
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Jaranowski et al. (1998)

⇣ := t+
r(t) · ngrid

c
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Define the new time coordinate for each grid point

Time resampling technique

# of grids

4

becomes smaller than a threshold ��✏ for any source di-
rection ns within the area covered by the grid point ng.
To optimize the grid placement, we employ the method
proposed in Ref. [37]. The residual phase ��� is ex-
panded up to the first order of �↵ := ↵s � ↵g and
�� := �s � �g. Then, we get

��� ' 2⇡fgw

c
RE cos� {��� sin �g cos(↵g � '� � ⌦�t)

��↵ cos �g sin(↵g � '� � ⌦�t)} . (4.4)

Here, the constant term is neglected because it degener-
ates with the initial phase �0. The maximum value of
the residual phase is

max
t

|���| =
2⇡fgw

c
RE| cos�|

⇥
q

(��)2 sin
2
�g + (�↵)2 cos2 �g . (4.5)

The grid points are to be determined to satisfy
maxt |���| < ��✏ for any source direction.

Because the residual phase (4.5) is symmetric under
the transformation �g ! ��g, the placement of grids on
the negative � side can be generated by inverting the sign
of the grids on the positive � side. Therefore, we focus
on the case with 0  �  ⇡/2.

Since the residual phase depends only on � at �g = ⇡/2,
a single template can cover the neighbor of � = ⇡/2. In
fact, at � = ⇡/2, Eq. (4.5) becomes

max
t

|���| =
2⇡fgw

c
RE|��| cos� . (4.6)

Therefore, the condition maxt |���|  ��✏ gives the
lower bound of �1 such that the region �1  �  ⇡/2 can
be covered by a signle patch represented by {(↵g, �g) =

(0,⇡/2)}, to find

�1 :=
⇡

2
� ��✏ ⇥

c

2⇡fgw

1

RE cos�
. (4.7)

Plural patches are necessary to cover the strip of a con-
stant � in the other range. We introduce a 2-dimensional
metric corresponding to the residual phase (4.5),

d�
2
= gijd⇠id⇠j = cos

2
�d↵

2
+ sin

2
�d�

2
. (4.8)

In general, a metric in a 2-dimensional manifold can be
transformed into a conformally flat metric by an appro-
priate coordinate transformation. When the space is con-
formally flat, the curve of a small constant distance mea-
sured from an arbitrary chosen point can be approxi-
mated by a circle. Therefore, a template spacing in the
2-dimensional parameter space becomes relatively easy.
By defining new variables X := ↵ and Y := � log | cos �|,
the metric can be transformed into

d�
2
= e

�2Y
(dX

2
+ dY

2
) . (4.9)

Along with [37], we can construct the sky patches cover-
ing the half-sky region with 0  �  �1. Figure 1 shows
a part of grid points constructed under the condition

��✏ = 0.058 , (4.10)

which we adopt throughout this paper. The total number
of grid points to cover the whole sky is

Ngrid = 352, 436 , (4.11)

for fgw = 100Hz.

FIG. 1: Grid point placement on a fraction of (↵, cos �)-
plane. Blue dots are grid points and orange contours show
the maxt |���(t)| = ��✏ contours for each grid point. The re-
gion {(↵, �)|� < �1} is covered by a single template (↵g, �g) =
(0,⇡/2) and the shape of the patch is square on this plane.

B. Modeling the effect due to the Earth’s orbital
motion

As we choose ��✏ to be sufficiently small, we neglect
��� in the following discussion. Then, after subtracting
the phase modulation due to the Earth’s rotation, the
phase of the gravitational wave (4.1) becomes

�(t) = 2⇡fgw⇣ + ���(t). (4.12)

We apply the short-time Fourier transform (STFT) to
the time-resampled strain,

s(⇣) = hobs(⇣) + n(⇣). (4.13)

In the rest of the paper, we treat only the time-resampled
data. Therefore, without confusion, the time-resampled
data in Eq. (4.13) can be denoted by the same character
as the original one. The strain is divided into Nseg seg-
ments having the duration Tseg and their start times are
denoted by ⇣j := jTslide, (j = 0, 1, · · · , Nseg�1). Tslide is
not necessary to be equal to Tseg. The output of STFT
with the window function w(⇣) is defined by

s
STFT
j,k = h

STFT
j,k + n

STFT
j,k , (4.14)

for 
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FIG. 2: An example of the `-domain waveform. The length of
the `-domain waveform is 220. This figure is a zoom-in around
the region at where the signal is localized. The amplitude is
h0 = 1.0.

candidates with a minimal computational cost. We here
divide an `-domain signal into short chunks so that each
chunk has the length �` and neighbored segments have
an overlap by �`/2, which is one of the simplest choices
but not the optimal one. Then, we obtain Nchunk/signal =

2(Nseg � �`)/�` chunks from one `-domain signal. The
excess power statistic for the grid point rg, the frequency
bin fk, and the c-th chunk (c = 0, 1, . . . , Nchunk/signal�1)
is defined by

E(rg, fk, c) := 4

(c+2)�`/2�1X

`=c�`/2

|S`,k|2

�̃2
k

, (4.31)

where

hN`,kN
⇤
`0,ki =:

1

2
�̃
2
k�``0 . (4.32)

The variance of noise in `-domain, �̃k, is estimated as

�̃
2
k =

Sn(fk)

NsegTseg
. (4.33)

The derivation of Eq. (4.33) is summarized in Appendix.
We define the SNR of the excess power by

⇢EP(rg, fk, c) :=
E(rg, fk, c)� hEin

�n(E)
, (4.34)

where

hEin = 2�` , (4.35)

and

�n(E) :=
p

h(E � hEin)2in = 2

p
�` , (4.36)

are, respectively, the expectation value and the standard
deviation of E when only noise exists. We select the can-
didate set of parameter values {rg, fk, c}, when

⇢EP(rg, fk, c) > ⇢̂EP

is satisfied with a threshold value ⇢̂EP. Strictly speak-
ing, since the excess power statistic E is the sum of 2�`
squared Gaussian random variables with the variance
1/2

p
�`, E follows a chi square distribution with the de-

gree of freedom 2�`. However, since here we choose �`

to be large, the distribution of E can be approximated
by a Gaussian distribution with the average 2�` and the
standard deviation 2

p
�`. Therefore, in the absence of

gravitational wave signal, the probability distribution of
⇢EP is a Gaussian distribution with zero mean and unit
variance.

Also in the presence of some signal, the excess power
statistics ⇢EP is given by a sum of many statistical vari-
ables. Thus, the statistical distribution of ⇢EP can be
approximated by the Gaussian distribution whose mean
and variance are calculated as

h⇢EPis =
2Pk

�̃2
k

p
�`

, (4.37)

�s(⇢EP) :=
p

h(⇢EP � h⇢EPis)2is

=

s

1 +
4Pk

�̃2
k�`

, (4.38)

where we define,

Pk :=

X

`

|H`,k|2 . (4.39)

The false alarm rate and the detection efficiency will be
assessed with this Gaussian approximation.

D. Neural network for localizing

Deep learning is one of the approaches for finding fea-
tures being hidden in the data. Artificial neural net-
works (ANNs) are the architectures playing the central
roll in deep learning. An ANN consists of consecutive
layers and each layer is formed by a lot of units (neu-
rons). Each layer takes inputs from the previous layer
and processed data is passed to the next layer. As a sim-
ple example, the process occurring in each layer can be
written as the combination of affine transformation and
a non-linear transformation, i.e.,

x
(`+1)
i = g

0

@
N(`)X

j=1

w
(`)
ij x

(`)
j + b

(`)

1

A (i = 1, 2, · · · , N (`+1)
) ,

(4.40)
where x

(`) is a set of input data on the `-th layer and
g is a nonlinear function, which is called an activation
function. We use a ReLU function, defined by

g(z) = max[z, 0] . (4.41)

The parameters w and b are respectively called weights
and biases. They are tunable parameters and optimized
to capture the features of data. The process to opti-
mize weights and biases is called training. Frequently,

Method
・Short-time Fourier transform is taken to the resampled strains. 
・Fourier transform is carried out for each frequency of STFT.

Spectrogram (w/o noise)

Transformed signal

Fr
eq
ue
nc
y

Time

Fourier transform

2⇡fgw
RES

c
�✓ . O(103)
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Tobs/TSTFT ⇠ O(106)
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Signal is localized !



Method
1. Excess power method 

If the signal power is localized within few bins, 
one can efficiently find the signal by counting power. 

 Select candidates 

2. Artificial neural network 
Using optimized (trained) neural network, 
one can find the signal w/o matching with many templates. 

 Predict the source location  

These methods are computationally cheap. 
Combining these methods, 
we restrict the possible parameter region  
of the source location and the GW frequency 
to be searched by the coherent method.



Method Set of transformed signals

Excess power : exceed a threshold?

No Yes

Neural Network : further localization

Reject

Store as a candidate

Pick up a signal

{ngrid, fk}
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Follow-up for each candidate with coherent MF



Setup of demonstration
We examine our method for a simplified situation, 

・Single detector (LIGO Hanford), 100% duty cycle 
・Stationary and Gaussian detector noise 
・duration 107 sec

It’s enough to provide the proof-of-principle. 
We suppose the assumption that 
the neural network is applicable for all-sky search and for fgw < 100 Hz 
with the fine-tuning. 

・ 
・Source direction is distributed only near the reference grid point.

Neural network is trained and tested with signals of limited parameter range.
|fgw � 100 Hz|  (Tseg)

�1

<latexit sha1_base64="hK10sg2LaZJnDb5Fj7j7GLSnKGU="></latexit>

The efficiency of the excess power method and the follow-up analysis 
is examined by analytical calculations.



Results: Excess power method
・The false alarm probability (FAP) is estimated analytically. 

・Sensitivity is quantified by         ,  
   the minimum amplitude which can be detected with 95% detection probability. 

・Benchmark: the coherent MF with # of false positives < O(1). 

・The sensitivity of the coherent MF

ĥ95%

<latexit sha1_base64="HtmL2T54FEXS42bSTh3ktxiNQN4="></latexit>

⇢̂EP : threshold for SNR of excess power
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and

F⇥(t) = b1 cos(↵� '� � ⌦�t)

+ b2 sin(↵� '� � ⌦�t)

+ b3 cos(2(↵� '� � ⌦�t))

+ b4 sin(2(↵� '� � ⌦�t)) , (6.18)

respectively (see [20]). The coefficients {an}4n=0 and
{bn}4n=1 depend on the latitude of the detector’s site �,
the orientation of the detector’s arms with respect to lo-
cal geographical directions � and the declination angle �.
Substituting the information of LIGO Hanford to � and
� and taking the average over � 2 [�⇡/2,⇡/2], we get

hFi� :=
1

⇡

Z ⇡/2

�⇡/2
d� F cos � ' 0.25 . (6.19)

By replacing F in Eq. (6.15) by hFi�, we obtain

h⇢MFi2s ' 0.25ĥ
2
0Tobs . (6.20)

With the threshold given by Eq. (6.13), the FDP is given
by

FDPMF(⇢̂MF; ĥ0)

:=
1p
2⇡

Z ⇢̂MF

�1
d⇢MF exp


� (⇢MF � h⇢MFis)2

2

�

=
1

2
erfc


h⇢MFis � ⇢̂MFp

2

�
. (6.21)

The parameter ĥ
95%
MF is defined by

FDPMF(⇢̂MF; ĥ
95%
MF ) = 5% . (6.22)

For the case of the coherent matched filtering, we fixed
the value of FAPMF as shown in Eq. (6.14). Therefore,
the parameter ĥ

95%
MF is no longer a variable. Using the

relations shown in Eqs. (6.13), (6.14), (6.21) and (6.22),
we obtain

log10 ĥ
95%
MF = �2.27286 . (6.23)

Table III shows the comparison between the excess power
method and the matched filtering. Here, we vary FAPEP

from 10
�2 to 10

�8 and the ratio of the amplitude param-
eters, ĥ95%

EP /ĥ
95%
MF , changes from 1.1 to 1.5. This means

that the excess power method can detect the signals hav-
ing the amplitude larger than that of the coherent search
only by 15(52)% when we choose the threshold for the
excess power ⇢̂EP so that FAPEP = 10

�2
(10

�8
).

Depending on the FAP of the excess power method,
the expected number of candidates is estimated as

Ncandidate = FAPEP ⇥Nchunk, (6.24)

where Nchunk is the number of all chunks obtained from
all `-signals. An `-domain signal contains 220 data points,
and the windows of chunks are generated by successively

TABLE III: The normalized signal amplitude ĥ95%
EP which is

detectable by using the excess power method with various
false alarm probabilities. The corresponding threshold for
the excess power ⇢̂EP and the detectable amplitude using the
excess power method normalized by the detection limit if we
were able to apply the coherent matched filtering method are
presented. For example, if FAPEP = 10�4 is allowed, the
excess power method can detect signals having the amplitude
larger than the thereshold for the coherent matched filtering
method only by about 32%.

FAPEP ⇢̂EP log10 ĥ
95%
EP ĥ95%

EP /ĥ95%
MF

10�8 5.61200 -2.08862 1.52843
10�7 5.19934 -2.10075 1.48632
10�6 4.75342 -2.11468 1.43941
10�5 4.26489 -2.13104 1.38618
10�4 3.71902 -2.15092 1.32416
10�3 3.09023 -2.17635 1.24886
10�2 2.32635 -2.21189 1.15073

sliding by 2
10 points. Therefore, Nchunk/signal = 1024

chunks are obtained per grid point in the sky and per
frequency bin. With the values Ngrid and Nbin listed on
Table II, the number of all chunks can be estimated as

Nchunk ⇠ 1.2⇥ 10
12

. (6.25)

To calculate the excess powers for all chunks in a single
`-domain signal, 2Nseg multiplications and 2Nseg addi-
tions of real numbers are required. The number of float-
ing point operations for calculating the excess powers for
all chunks can be estimated by

NEP = 4Nseg ⇥Ngrid ⇥Nbin ⇠ 4.7⇥ 10
15

. (6.26)

Compared with Eqs. (6.1) and (6.2), the computational
cost for the excess power method can be neglected.

C. Neural network to restrict source direction

One of the key points of our work is to use a convo-
lutional neural network for the purpose of reducing the
computational cost required for the follow-up analysis by
narrowing down the possible sky area quickly. Using the
test dataset, we assess how accurately the trained neural
network can determine the sky position. The error in the
estimated parameter Q is defined by

�Q := Q
pred �Q

target
, (6.27)

where Q
pred and Q

target are the predicted and the true
values, respectively. For simplicity, the (↵, �)-plane is
regarded as a two-dimensional Euclidean space and the
shape of the predicted region is assumed to be a disk on
the (↵, �)-plane. For each data, the origin of the disk is
set to the point (↵

pred
, �

pred
). The area of the disk is

determined so that the probability that the disk contains
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and

F⇥(t) = b1 cos(↵� '� � ⌦�t)

+ b2 sin(↵� '� � ⌦�t)

+ b3 cos(2(↵� '� � ⌦�t))

+ b4 sin(2(↵� '� � ⌦�t)) , (6.18)

respectively (see [20]). The coefficients {an}4n=0 and
{bn}4n=1 depend on the latitude of the detector’s site �,
the orientation of the detector’s arms with respect to lo-
cal geographical directions � and the declination angle �.
Substituting the information of LIGO Hanford to � and
� and taking the average over � 2 [�⇡/2,⇡/2], we get

hFi� :=
1

⇡

Z ⇡/2

�⇡/2
d� F cos � ' 0.25 . (6.19)

By replacing F in Eq. (6.15) by hFi�, we obtain

h⇢MFi2s ' 0.25ĥ
2
0Tobs . (6.20)

With the threshold given by Eq. (6.13), the FDP is given
by

FDPMF(⇢̂MF; ĥ0)

:=
1p
2⇡

Z ⇢̂MF

�1
d⇢MF exp


� (⇢MF � h⇢MFis)2

2

�

=
1

2
erfc


h⇢MFis � ⇢̂MFp

2

�
. (6.21)

The parameter ĥ
95%
MF is defined by

FDPMF(⇢̂MF; ĥ
95%
MF ) = 5% . (6.22)

For the case of the coherent matched filtering, we fixed
the value of FAPMF as shown in Eq. (6.14). Therefore,
the parameter ĥ

95%
MF is no longer a variable. Using the

relations shown in Eqs. (6.13), (6.14), (6.21) and (6.22),
we obtain

log10 ĥ
95%
MF = �2.27286 . (6.23)

Table III shows the comparison between the excess power
method and the matched filtering. Here, we vary FAPEP

from 10
�2 to 10

�8 and the ratio of the amplitude param-
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EP /ĥ
95%
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�2
(10

�8
).
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To calculate the excess powers for all chunks in a single
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tions of real numbers are required. The number of float-
ing point operations for calculating the excess powers for
all chunks can be estimated by
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Compared with Eqs. (6.1) and (6.2), the computational
cost for the excess power method can be neglected.

C. Neural network to restrict source direction

One of the key points of our work is to use a convo-
lutional neural network for the purpose of reducing the
computational cost required for the follow-up analysis by
narrowing down the possible sky area quickly. Using the
test dataset, we assess how accurately the trained neural
network can determine the sky position. The error in the
estimated parameter Q is defined by

�Q := Q
pred �Q

target
, (6.27)

where Q
pred and Q

target are the predicted and the true
values, respectively. For simplicity, the (↵, �)-plane is
regarded as a two-dimensional Euclidean space and the
shape of the predicted region is assumed to be a disk on
the (↵, �)-plane. For each data, the origin of the disk is
set to the point (↵
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pred
). The area of the disk is

determined so that the probability that the disk contains

) FAPMF ⇠ 4.6⇥ 10�21
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TABLE I: The architecture of the neural network used in this
work. For convolution and max pooling layers, the input and
the output are characterized by (C,N) where C is the number
of channels and N is the length of the data. For convolutional
layers, the lengths of kernels are 16, 16, 8, 8, 4 and 4 from the
earlier to the later layer. The kernel size of the max pooling
layers is 4.

Layer Input output
1-d convolution (2, 2048) (64, 2033)

ReLU (64, 2033) (64, 2033)
1-d convolution (64, 2033) (64, 2018)

ReLU (64, 2018) (64, 2018)
max pooling (64, 2018) (64, 504)

1-d convolution (64, 504) (128, 497)
ReLU (128, 497) (128, 497)

1-d convolution (128, 497) (128, 490)
ReLU (128, 490) (128, 490)

max pooling (128, 490) (128, 122)
1-d convolution (128, 122) (256, 119)

ReLU (256, 119) (256, 119)
1-d convolution (256, 119) (256, 116)

ReLU (256, 116) (256, 116)
max pooling (256, 116) (256, 29)

Dense 256⇥29 64
ReLU 64 64
Dense 64 64
ReLU 64 64
Dense 64 2

E. Heterodyning and down sampling

After selecting candidates and narrowing down the
possible area at which the source is likely to be located,
we apply the coherent matched filtering for the follow-up
analysis. The grid points with the resolution shown in
Eq. (3.5) are placed to cover the selected area. Assuming
a grid point, we can carry out the demodulation of the
phase by using the time resampling technique. If the de-
viation between the directions of the grid point and the
source is smaller than the resolution, the residual phase
remaining after the time resampling is sufficiently small
to avoid the loss of SNR.

In this operation, heterodyning and down sampling can
significantly reduce the data length and hence the com-
putational cost [39]. Let us assume that we have a candi-
date labeled with {ng, fk, c}. If the candidate is the true
event, the gravitational wave frequency fgw should take
the value in the narrow frequency band indicated by

fk � 1

2Tseg
 fgw  fk +

1

2Tseg
. (4.46)

By multiplying the factor e
�2⇡ifk⇣ to the resampled

strain, we can convert the gravitational wave signal fre-
quency to near DC components (heterodyning). After

that, the gravitational wave signal has lower frequency
than 1/2Tseg Hz. Therefore, downsampling by appropri-
ately averaging the resampled strain data with a sam-
pling frequency ⇠ 1/Tseg reduces the number of data
points without loss of the significance of the gravitational
wave signal.

V. SETUP OF PERFORMANCE TEST

We analytically estimate the performances of the ex-
cess power method and the follow-up search by the coher-
ent matched filtering method. The deep learning method
is tested by using mock data, which is generated by in-
jecting an `-domain waveform given in Eq. (4.27) into a
simulated Gaussian noise. We assume that we use only
a single detector, and use the geometry information (e.g.
latitude of the detector) of LIGO Hanford in calculat-
ing the antenna pattern function as an example. In this
work, we focus on one sky patch covered by a single grid
point and a frequency bin fixed at fk = 100 Hz, since the
scaling to the search over the whole sky and the wider
frequency band is straightforward. The sources are ran-
domly distributed within the sky patch. The parameters
�k are randomly sampled from a uniform distribution on
[�0.5, 0.5]. The original strain has the duration 2

24 sec
and the sampling frequency 1024 Hz. In assessing the
ability of our detection strategy, we use the normalized
gravitational wave amplitude divided by the amplitude
of the noise spectral density at the reference frequency,
say fref . Namely, the normalized amplitude is given by

ĥ0 := h0

✓
Sn(fref)

1Hz�1

◆�1/2

. (5.1)

Here, we set fref = fk.
In order to train the neural network, we generate

200000 and 10000 waveforms for training and validation
datasets, respectively. At each training step, the ampli-
tude whose logarism is randomly chosen from the uniform
distribution on �2.3  log10ĥ0  �1.2 is multiplied to
the waveforms, and they are injected into the random
Gaussian noise. In the same manner, the test dataset
containing 10000 waveforms is also prepared and used
in Sec. VI C. For training, we employ the mini-batch
training. We set the batch size to 256. The Adam [40]
is used for the update algorithm. We implement with
the Python library PyTorch [41] and use a GPU GeForce
1080Ti. The parameter values we used are listed in Ta-
ble II.

VI. RESULTS

A. Computational cost for conversion from
resampled strains to `-domain strains

Before applying the excess power method, we carry out
STFT for each resampled strain. Using the values shown
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FIG. 5: The cumulative histogram of the distance defined by
Eq. (6.28) with seven datasets having different amplitudes.
Each dataset has ten thousand signals. The darker (brighter)
solid lines correspond to the bigger (smaller) amplitudes. The
dotted line indicates 97.5% cumulative fraction. The value of
D⇤(ĥ0) can be read from the intersection points between the
dotted line and the solid lines of the cumulative fraction.

the true location of the source is equal to 97.5%. To
assess the plausible value of the disk area, we evaluate the
empirical distribution of the Euclidean distance between
the predicted and the true value of (↵, �), which is given
by

D :=

p
(�↵)2 + (��)2 . (6.28)

The distribution of D is expected to depend on the sig-
nal amplitude. Employing the test dataset which is pre-
pared in Sec. V, we generate seven datasets by multiply-
ing the different values of the amplitude ĥ0 and adding
the Gaussian noise to the waveforms. Figure 5 shows the
cumulative histograms of D for various amplitudes of the
testdata. We define D⇤(ĥ0) as the distance D where the
cumulative fraction of events exceeds 97.5%. The disk
area, which is the area of the 97.5% confidence region, is
estimated by

(�✓)
2
NN := ⇡ ⇥ [D⇤(ĥ0)]

2
. (6.29)

Figure 6 shows how large the error circle of the sky po-
sition estimated by the neural network is. It shows that
the neural network achieves the O(10

�7
) rad

2 localiza-
tion. It is smaller by two order of magnitude than the
area of the patch 6.36⇥ 10

�5
rad

2. Therefore, the num-
ber of grids required for the follow-up coherent search is
reduced by 10

�2.
It takes 14 sec for processing ten thousand signals with

a single GPU (GeForce 1080Ti). The computational time
for processing all candidates is estimated as

TNN ' 1.4⇥ 10
�3

sec⇥Ncandidate

' 1.7⇥ 10
6
sec⇥

✓
FAPEP

10�3

◆
(6.30)

FIG. 6: The localization ability of the deep neural network.
Compared with the area of the patch (6.36 ⇥ 10�5rad2), the
area predicted by the neural network is reduced by two order
of magnitude.

Thus, it is reasonable to require the false alarm proba-
bility for the excess power method to be less than 10

�3.
If multiple GPUs are available, the computational time
of the deep learning can be reduced by employing them
for a parallel computing.

D. Follow-up by coherent matched filtering

The coherent matched filtering is applied to all the
candidates selected by the excess power method with the
information about the sky position estimated by the con-
volutional neural network. As stated in Sec. III, the
coherent matched filtering is equivalent to the Fourier
transform after resampling. Since the process of Fourier
transform is computationally most expensive, the com-
putational cost for each candidate is estimated by that
for the fast Fourier transform (FFT). the number of float-
ing point operations required for FFT per candidate can
be estimated by

Ncoh = 5Nlength log2 Nlength ' 5.0⇥ 10
7
, (6.31)

where Nlength is the number of data points contained in
a heterodyned and downsampled strain. From the dis-
cussion in Sec. IVE, it is reasonable to set a sampling
frequency of a downsampled strain to T

�1
seg = 2

�5 Hz.
Because a duration of a strain is set to Tobs = 2

24 sec
(see Table. II), we get

Nlength = Tobs ⇥
1

Tseg
= 2

19
. (6.32)

For carrying out the coherent matched filtering, we use
new grid points which are placed as such that each grid
covers a sky region of O((�✓)

2
coh) (Eq. (3.5)) and all re-

gion within the error circle of the prediction by the neural
network is covered by the new grids. the number of new

Area of a patch ~ 6.35 x 10-5 [rad2]

Our neural network can reduce the computational cost 
of the follow-up coherent analysis by 10-2.

A patch is the region where 
the reference grid point covers.
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grid points is estimated by the ratio of the areas, (�✓)2NN

and (�✓)
2
coh. The required number of floating point op-

erations for the follow-up search can be estimated as

Nfollow-up = Ncandidate ⇥
(�✓)

2
NN

(�✓)
2
coh

⇥Ncoh . (6.33)

We remark that the number of candidates Ncandidate and
the localized sky area (�✓)

2
NN depend on the threshold

⇢̂EP.

E. Computational cost

By combining the results obtained so far, the number
of floating point operations for our analysis is estimated
as

Ncomp = NSTFT +NFFT +Nfollow-up . (6.34)

If we accept relatively large number of false alarms in the
excess power method, then the signals having smaller
amplitudes would be detected. In this sense, we want
to set FAPEP to a larger value. However, the compu-
tational costs for the deep learning and the follow-up
search by the coherent matched filtering drastically in-
crease because the number of candidates selected by the
excess power method increases. The value of FAPEP (or
a threshold value ⇢̂EP) is determined by the trade-off be-
tween the sensitivity for a smaller signal and the compu-
tational cost.

Figure 7 shows the computational cost as a function
of FAPEP. When FAPEP becomes larger than 10

�5, the
computational cost of the follow-up coherent matched fil-
tering surpasses that of the signal conversion to `-domain.
It increases as the value of FAPEP increases. On the
other hand, when FAPEP is lower than 10

�6, the compu-
tational cost of the signal conversion to `-domain domi-
nates the total computational cost and it can’t be reduced
by decreasing FAPEP. Therefore, at least, we need com-
putational resources that are enough to finish the sig-
nal conversion to `-domain within the realistic compu-
tational time. Figure 8 shows the relation between the
computational cost and the minimum amplitude of the
detectable signals. From this figure, We can read how
small signal can be detected with the acceptable compu-
tational cost. For example, assuming that computational
resources of O(1)TFLOPS are available, the computa-
tional cost Ncomp ⇠ 10

19 is acceptable with an allowed
computational time O(10

7
) sec. In this case, it is reason-

able to set FAPEP ⇠ 10
�4 and our method can achieve

log10 ĥ
95%
0 = �2.15 with 95% detection efficiency. This

value of the amplitude is larger than that of the coherent
matched filtering only by 32%.

VII. CONCLUSION

In this paper, we proposed a new method of all-sky
search for continuous gravitational waves, combining the

FIG. 7: The computational cost as a function of the false
alarm probability. For FAPEP . 10�6, the computational
cost is constant because the signal conversion to `-domain re-
quires the constant computational cost. For FAREP & 10�5,
the computational cost of the follow-up analysis becomes
dominant.

FIG. 8: The relation between the detectable amplitude and
the computational cost.

excess power method and the deep learning method. The
time resampling and the STFT are used for localizing the
signal into a relatively small number of elements in the
whole data. Then, the excess power method selects the
candidates of the grid point in the sky and the frequency
bins where the signal likely exists. The deep neural net-
work narrows down the region where to be explored by
the follow-up search by two orders of magnitude than the
original area of the patch. Before the follow-up coherent
search, the heterodyning and the downsampling can be
employed for reducing the computational cost. We cal-
culated the computaional cost of our method. Most of
the computational costs are spent by the STFT and the
follow-up coherent matched filtering search. The compu-
tational costs of the excess power method and the deep
learning are negligibly small. We compared the detection
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whole data. Then, the excess power method selects the
candidates of the grid point in the sky and the frequency
bins where the signal likely exists. The deep neural net-
work narrows down the region where to be explored by
the follow-up search by two orders of magnitude than the
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・Computational costs of excess power 
and neural network are negligibly small.

・Total computational cost is estimated by

transform the strain follow-up

・If we have 1TFlops computational power, 
Ncomp ~ 1019 is acceptable.

・FAP~10-4 is reasonable.

Detectable amplitude is 
only 32% larger than MF.



Conclusion
We proposed the new search method of CGWs. 

With some simplification, we assessed the ability of our method. 

We show that our method can detect larger signals  
than that of the coherent matched filtering only by ~32% 
with reasonable computational resources. 

Our setup of this work seems to be too simplified, 
but it’s enough to show a proof-of-principle. 

It is expected that our method is applicable to all-sky search 
of monochromatic wave of fgw < 100 Hz. 
To apply for all-sky unknown search, 
we need to sophisticate our method (especially ANN).


