Improvement of the Laser Intensity Stabilization System for O4 in the Gravitational Wave Telescope KAGRA

2020/12/19

7th KAGRA International Workshop

University of Toyama

Y. Kuromiya, on behave of the KAGRA Collaboration

Outline

1. Introduction

2. Measurement of the Intensity noise in O3GK

3. Improvement of the ISS for O4

4. Measurement of the Beam jitter effect on the PD surface

5. Summary and Future plan

Introduction

KAGRA is a gravitational wave detector based on the Michelson interferometer.

The arrival of gravitational waves fluctuates the arm length of the interferometer.

 \rightarrow The signal at the interference port fluctuates.

However, Laser intensity fluctuations cause sensor noise.

 \rightarrow The sensitivity of the interferometer is reduced.

Introduction

Intensity Stabilization System (ISS)

suppresses intensity fluctuations.

The required value for the ISS is determined by the observation sensitivity of KAGRA.

Required value in O3 = $1 \times 10^{-7} / \sqrt{\text{Hz}}$ Required value in O4 = $1 \times 10^{-8} / \sqrt{\text{Hz}}$ Final required value = $2 \times 10^{-9} / \sqrt{\text{Hz}}$ @ 20 Hz

Overview of KAGRA

2020/12/19

Intensity Stabilization System

Open loop transfer function

Measurement Intensity noise in O3GK

Measurement Intensity noise in O3GK

Coherence with beam jitter

Measurement of the beam jitter effect

We want to determine the cause of the beam jitter in KAGRA.

We demonstrated the beam jitter effect on PD surface as follows.

- The angle of the mirror is modulated by applying sine voltage to the PZT on the mirror.
- This causes the beam position fluctuation on the PD surface.
- The beam jitter effect in the PD signal is demodulated using lock-in amplifier.

The frequencies for oscillating the mirror were **1 Hz** and **10 Hz**.

Measurement of the beam jitter effect

The magnitude of the signal for each beam position

Oscillating frequency = 1 Hz

Oscillating frequency = 10 Hz

Model calculation

$$I(x,y) = I_0 \exp\left(-2\left(\frac{(x-x_0)^2}{\omega_x^2} + \frac{y^2}{\omega_y^2}\right)\right)$$
$$\frac{dP(x_0)}{dx_0} = \int_0^{r_0} r dr \int_0^{2\pi} d\theta \, \frac{dI(r,\theta)}{dx_0}$$
$$= \frac{4I_0}{\pi} \int_0^{r_0} r dr \int_0^{2\pi} d\theta \, (r\cos\theta - x_0) \exp\left(-2\left(\frac{(r\cos\theta - x_0)^2}{\omega_x^2} + \frac{r^2\sin\theta^2}{\omega_y^2}\right)\right)$$

- Assume a Gaussian beam
- Differentiate the beam intensity distribution at beam position x₀ and integrate it over the area of the PD

Model calculation

Oscillating frequency = 1 Hz

Comparison of measured values and calculated values

Oscillating frequency = 10 Hz

Model calculation

Comparison of measured values and calculated values

Oscillating frequency = 1 Hz

Oscillating frequency = 10 Hz

Intensity Noise and Beam jitter effect

Summary

- We considered the new ISS optical system for O4.
 - Support for high power laser
 - Suppress of beam jitter
- We measured the beam jitter effect on the PD surface.
 - At the edge of the PD, beam jitter effect is due to the beam intensity distribution.
 - At the center of the PD, beam jitter effect is caused by other effects.
 - We need to align the beam to the center of the PD.

Future plan

- We will consider the detailed design of each optical element for the new optical system.
- We will proceed with the measurement of the beam jitter effect under different conditions.