

Study of the frequency domain analysis method to estimate calibration errors

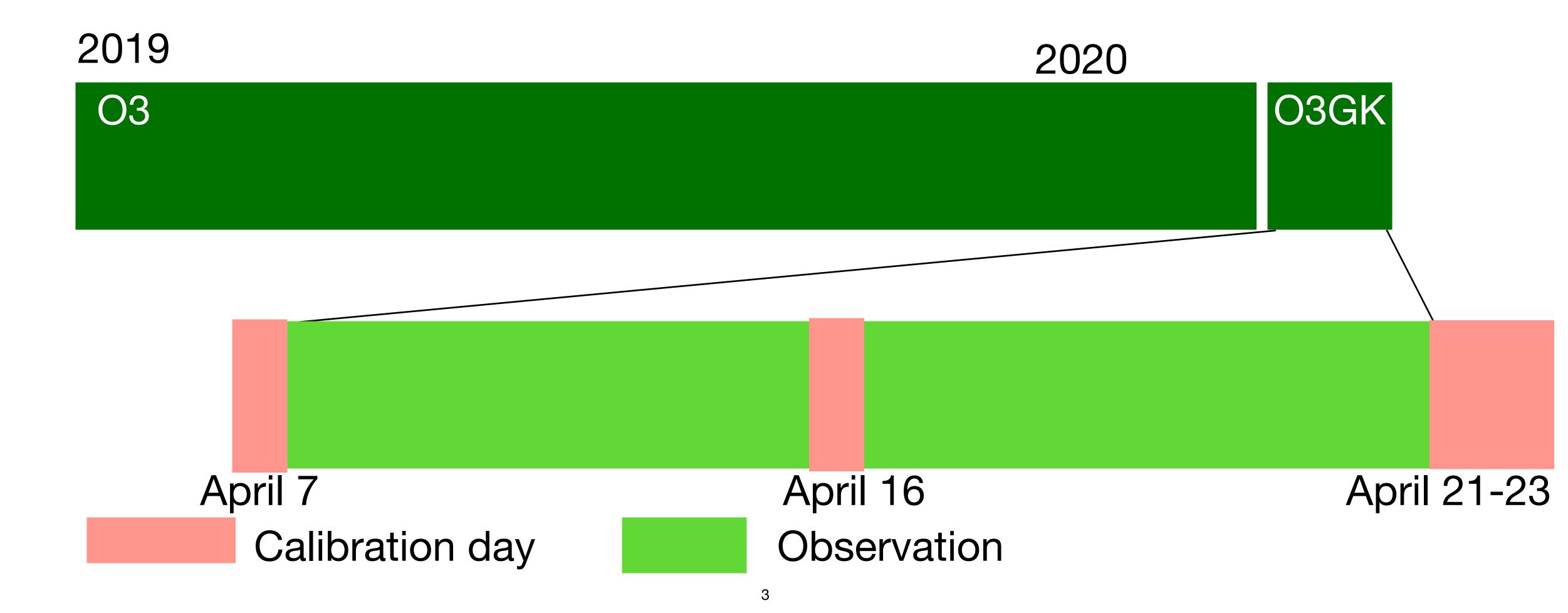
National Central University, Taiwan Honglin.Lin on behalf of KAGRA

Outline

- 1. Introduction of KAGRA
- 2. Introduction of Calibration
- 3. Motivation
- 4. Maximum-likelihood method
- 5. Mask and reason
- 6. Fitting Result
- 7. Summary

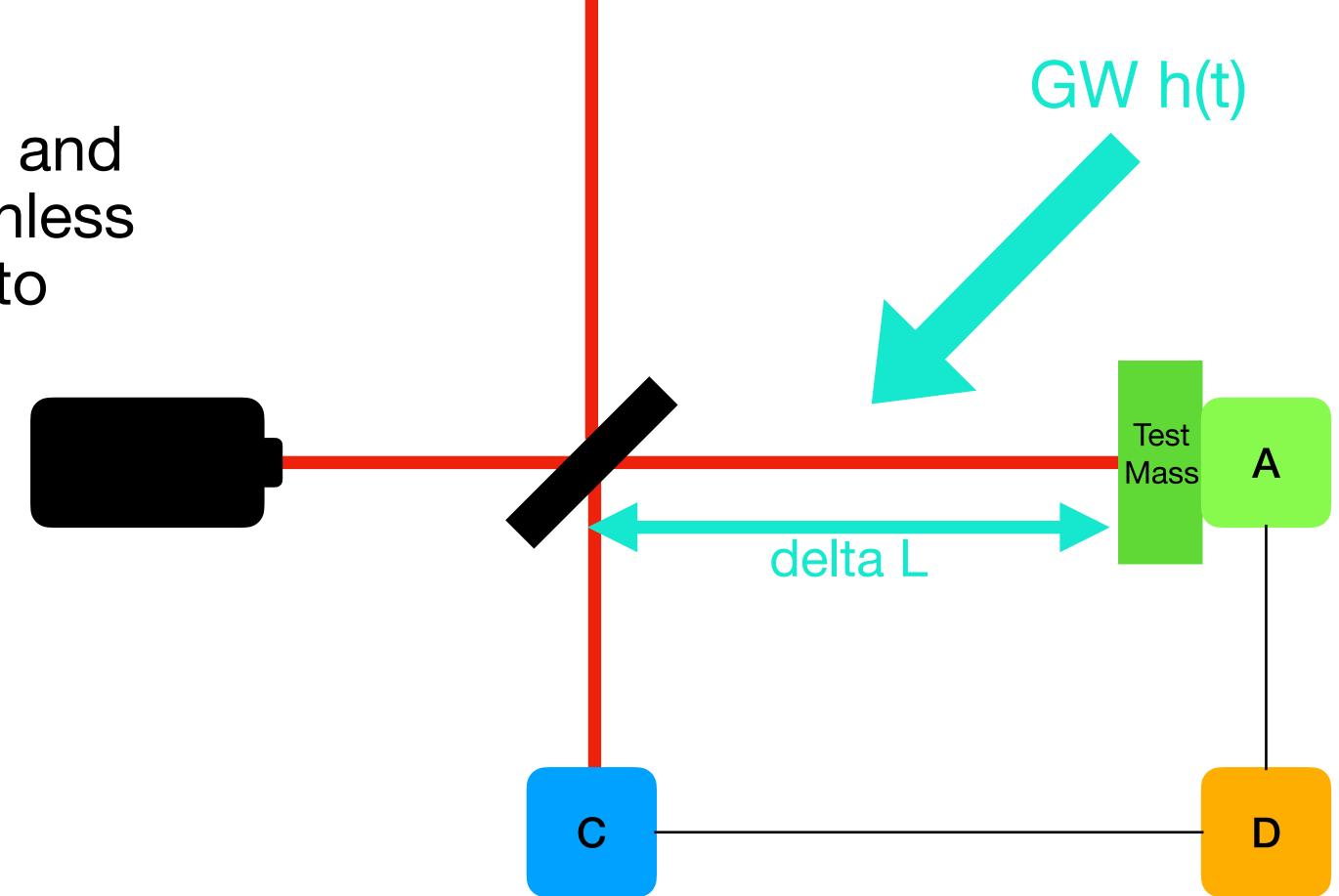
Introduction of KAGRA

Observation3 starts in 2020, when KAGRA(Japan) and GEO600(Germany) joint GW observatory network.



What is Calibration?

We cannot know exactly the relationship between GW strain and detector's signal we received unless we use some external sources to calibrate it.

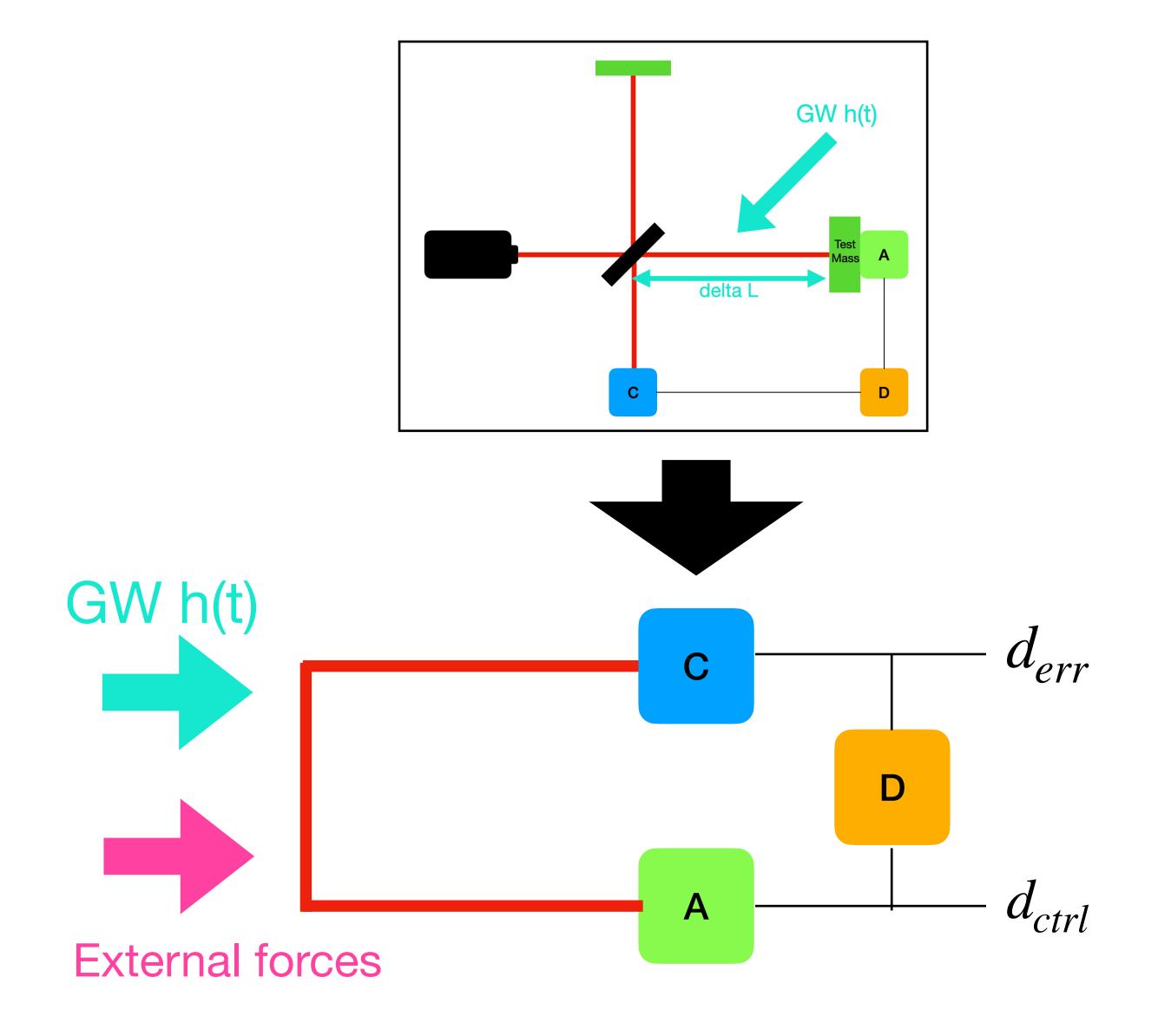


DARM Model

Interferometer is large, Gravitational waves is extremely tiny. Measuring such a small signals requires calibration.

DARM (Differential ARM length) model explains how h(t) from interferometer to signals we detect.

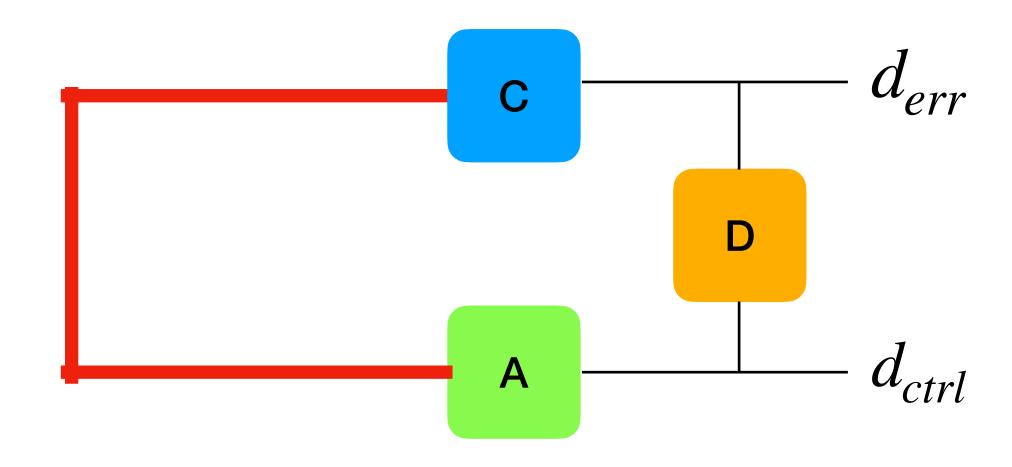
With calibrating this model parameters. We can improve accuracy of it.



Estimate parameters and errors of A,C

Reconstruction

After calibrate parameters, we can obtain Response function, which is crucial for reconstruction GW signals.



$$h(t) = R * d_{err} = \frac{1}{L} \left(\frac{1+G}{C} \right) d_{err}$$

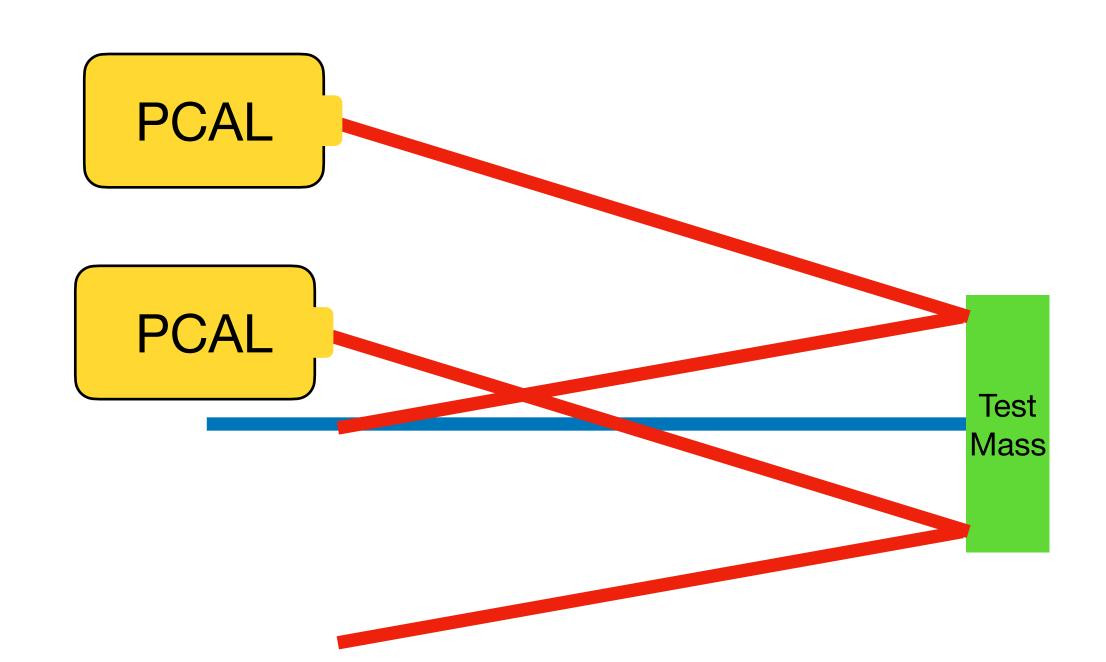
$$\frac{\delta h(t)}{h(t)} = 1 - \frac{\delta R}{R} \frac{\sigma h(f,t)}{R^{(model)}} = \frac{\sigma_h(f,t)}{h}$$

$$R = C^{-1} + AD$$

Photon Calibrator

The calibration requires forces which is out of the loop, means we should inject signals independently.

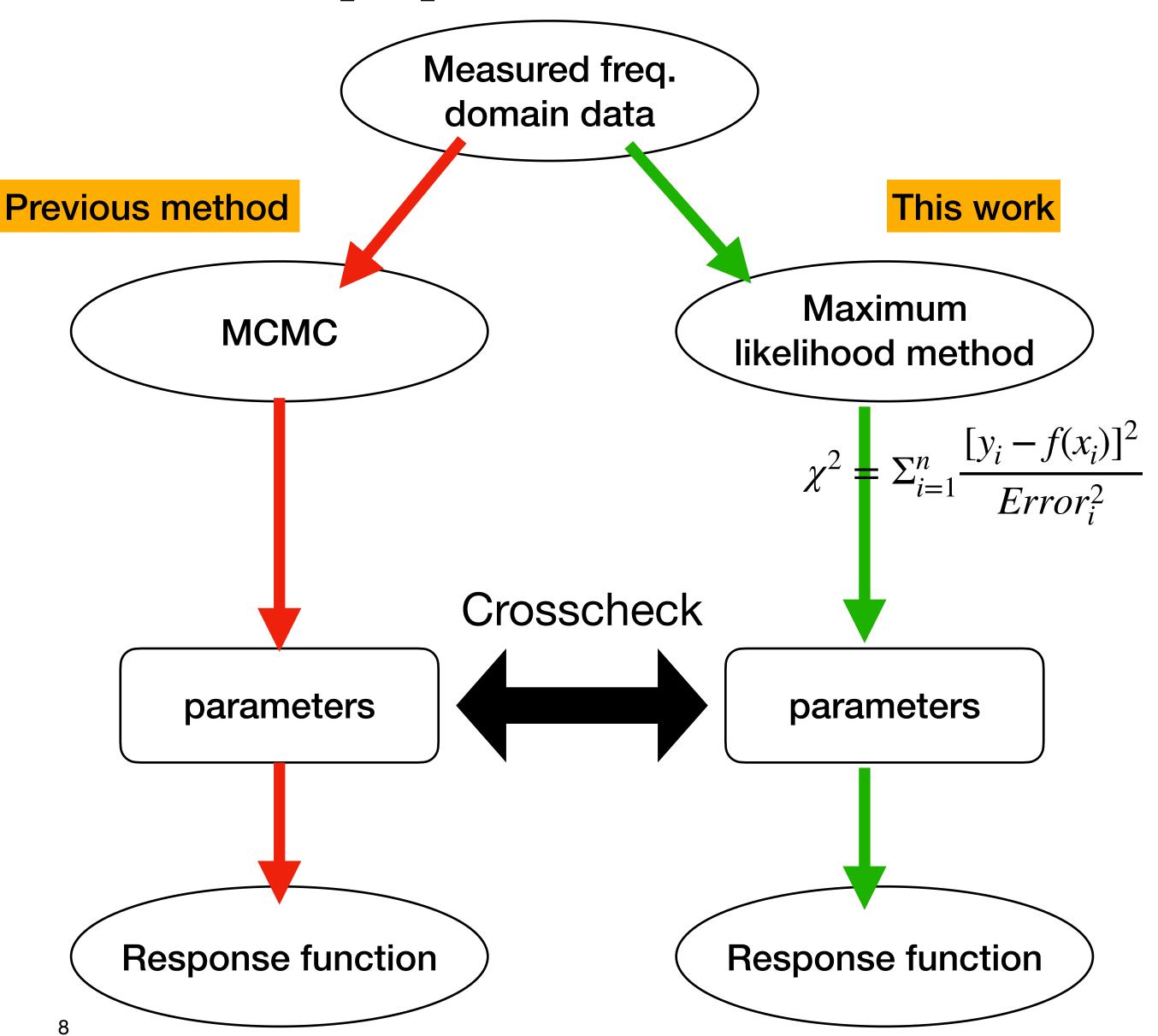
P(Photon) Calibrator injects two laser beams in above and below to generate known signals. Thus, we can realize the relationship of them.



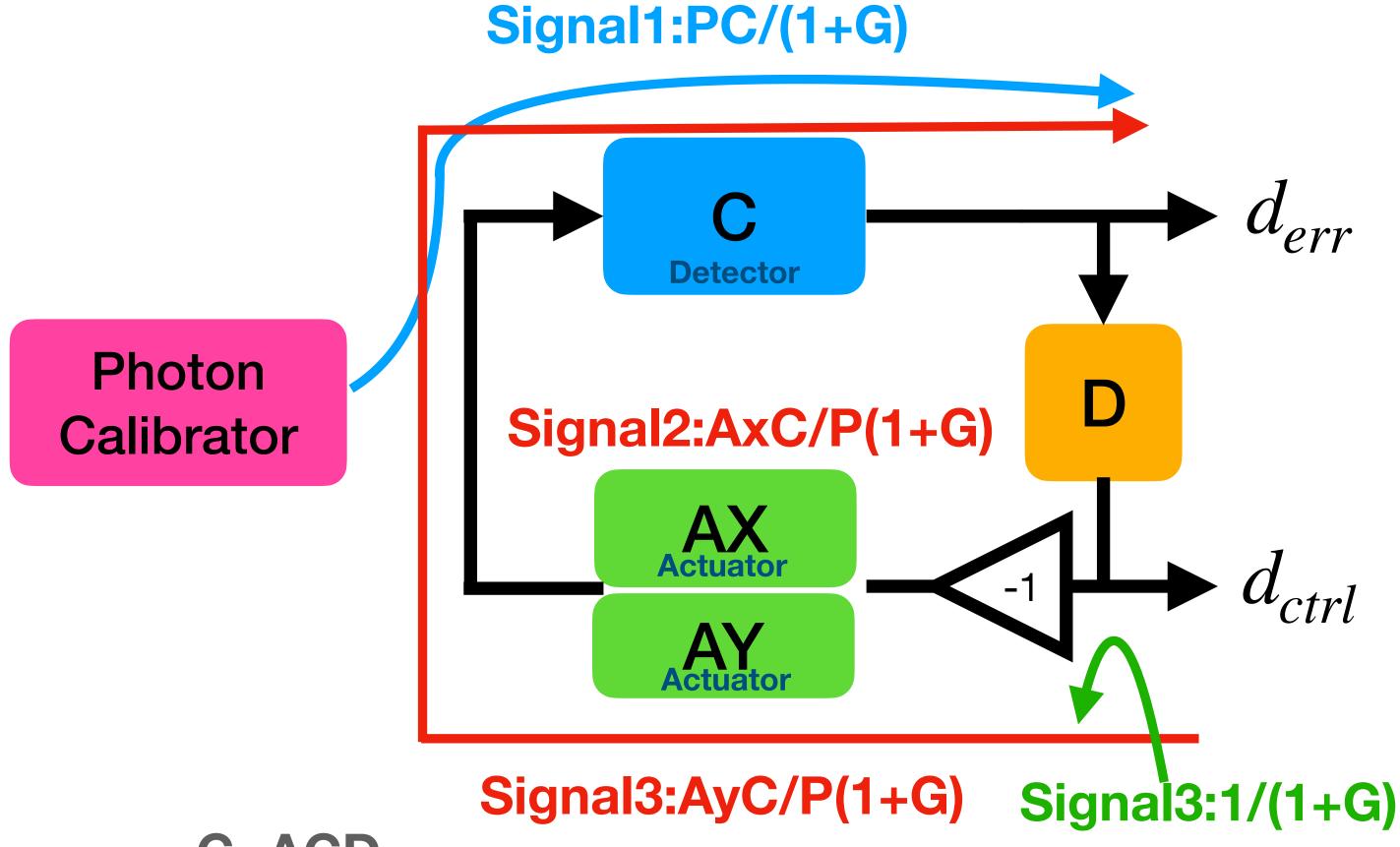
Development of Independent pipeline

Motivation

- Build a new pipeline of error estimation.
- In crosscheck the parameters with Bayesian(MCMC) analysis.
- We can avoid the analysis bias with independent method



Measurement of A and C



Calibration data set

Data-1: Apr. 7

Data-2:Apr.16

Data-3:Apr.21

Data-4:Apr.22

Data-5:Apr.23

G=ACD

Signal1:PC/(1+G)

Signal2:AxC/P(1+G)

Signal3:AyC/P(1+G)

Signal3:1/(1+G)

Analysis procedure

Step.1:Data process

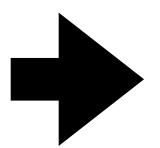
Measured data

Signal1:PC/(1+G)

Signal2:AxC/P(1+G)

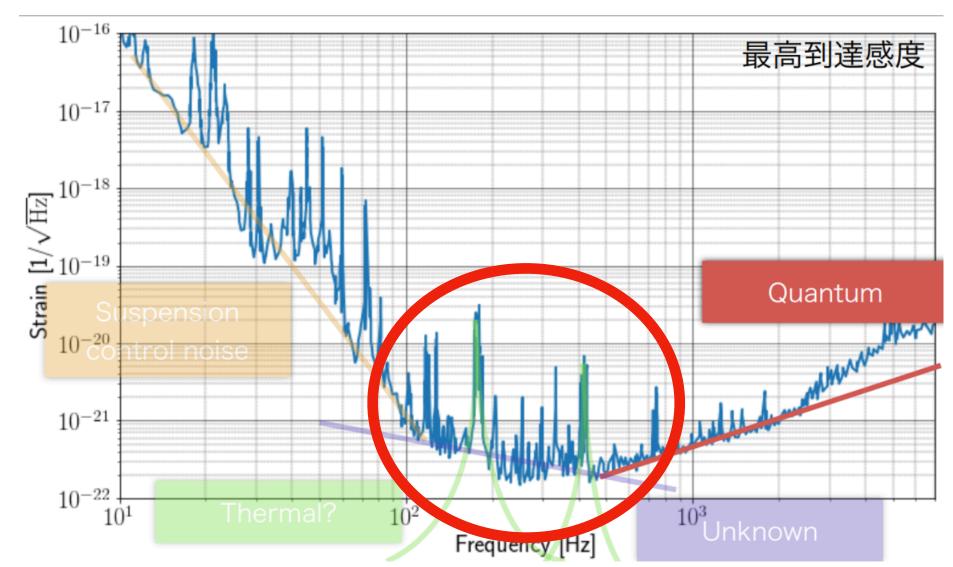
Signal3:AyC/P(1+G)

Signal3:1/(1+G)



Process of Ax,Ay,C,AC,P function

Step.2:Data quality check



Define the mask to avoid well-known resonance peak

Step.3:Simultaneous fitting and Estimation of Model Parameters

$$\overrightarrow{\theta} = (H_{ax}, \tau_{ax}, H_{ay}, \tau_{ay}, H_c, \tau_c, H_p, \tau_p)$$

Variables	Parameters			
Hax	Actuator Efficiency of X arm			
tax	Time Delay of Suspension System			
Hay	Actuator Efficiency of Y arm			
tay	Time Delay of Suspension System			
Нс	Optical efficiency			
fc	Cavity Pole Frequency			
tc	Time Delay of the C			
Нр	Pcal Efficiency			
tp	Pcal Time Delay			

Actuator
$$A_x = H_{ax}e^{-2i\pi f(\tau_{ax}-\tau_p)}$$

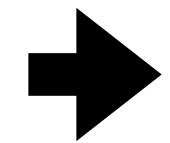
$$A_y = H_{ay}e^{-2i\pi f(\tau_{ay}-\tau_p)}$$
 Sensing
$$C = \frac{Hc}{1+i\frac{f}{f_c}}e^{-2\pi f(\tau_c+\tau_p)}$$

$$C = \frac{Hc}{1 + i\frac{f}{f_c}} e^{-2\pi f(\tau_c + \tau_p)}$$

$$R_x = H_p e^{-2i\pi f \tau_p}$$

Pcal
$$R_x=H_pe^{-2i\pi f\tau_p}$$
 A+C
$$AC=(H_{ax}e^{-2i\pi f\tau_{ax}}+H_{ay}e^{-2i\pi f\tau_{ay}})\frac{H_c}{1+i\frac{f}{f_c}}e^{-2i\pi f\tau_c}$$

Simultaneously Fitting

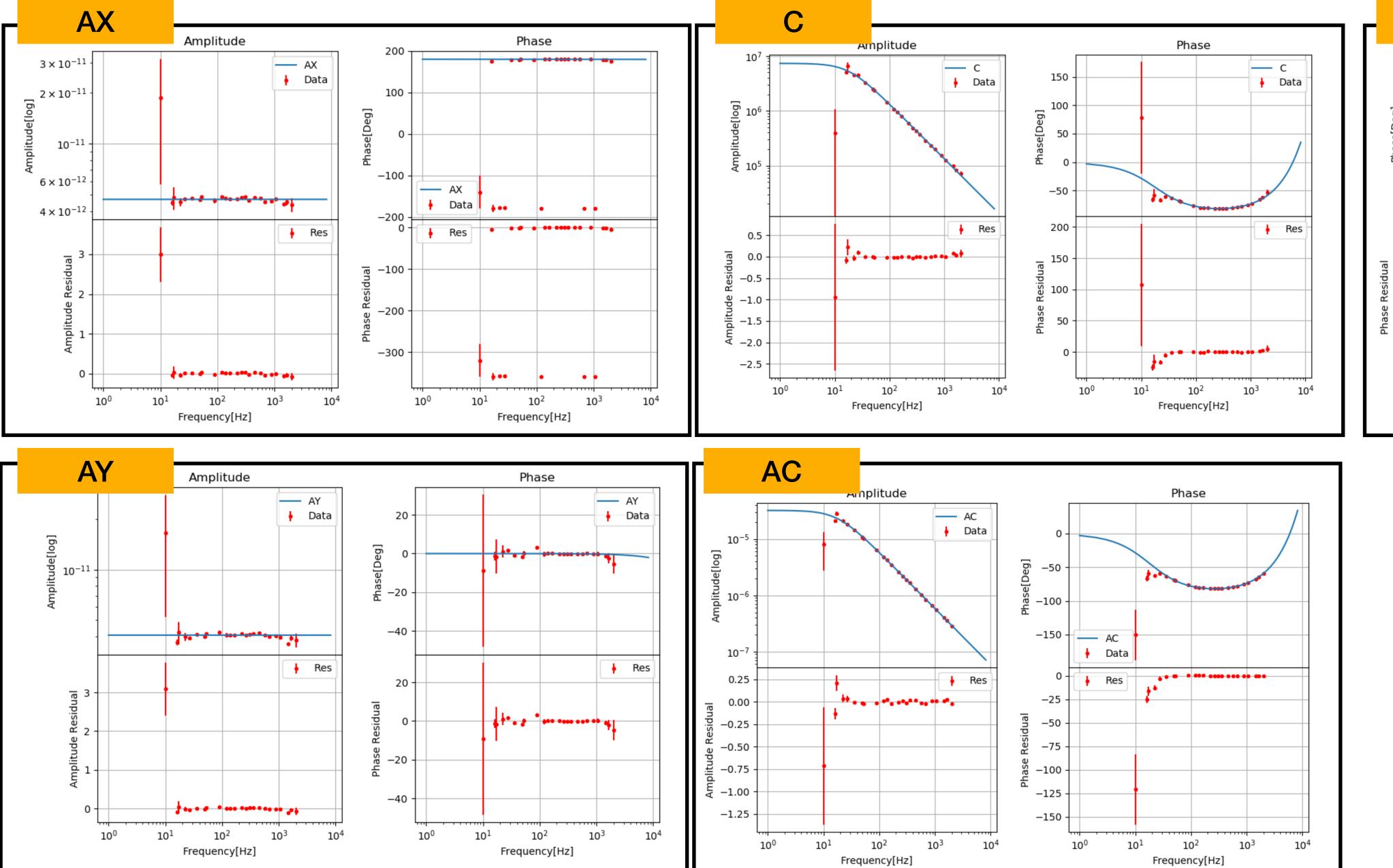


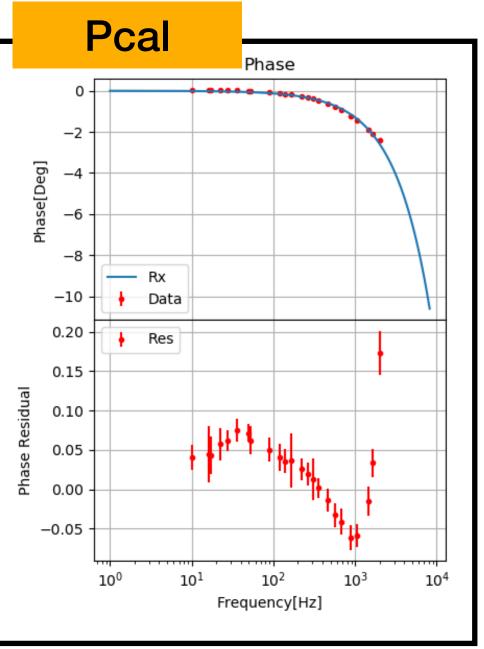
Example of Data-1: Apr. 7

Mask Example of Data-1: Apr. 7 10^{-14} blue:data used 10^{-16} red:data discard GW strain ASD [11√Hz] 10^{-18} data in the peak! 10-20 -10-22 -Criteria1:suspension resonance freq. Criteria2:high freq. 10⁴ 100 10 Frequency [Hz]

Results of simultaneous fitting

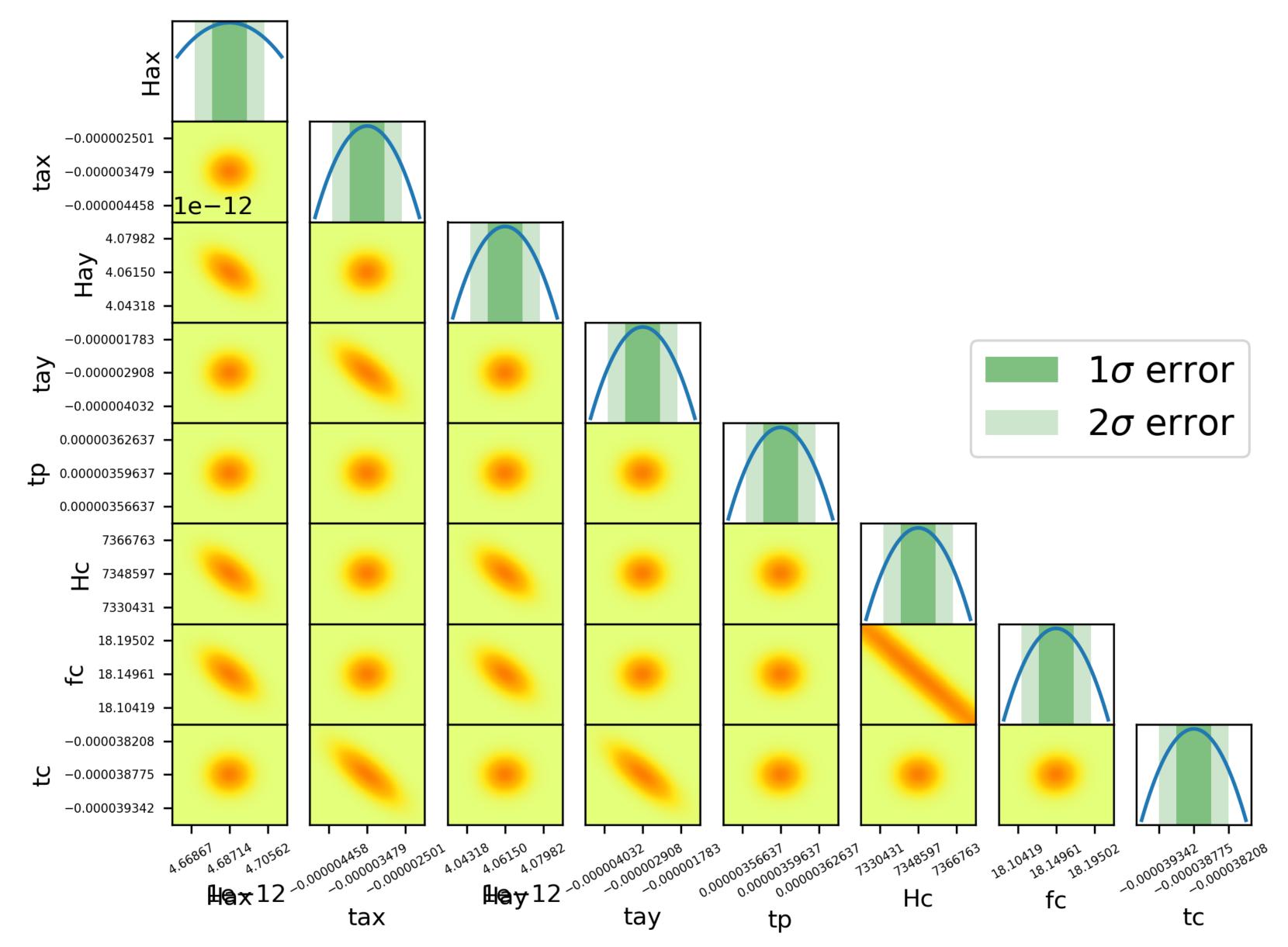
Example of Data-1: Apr. 7

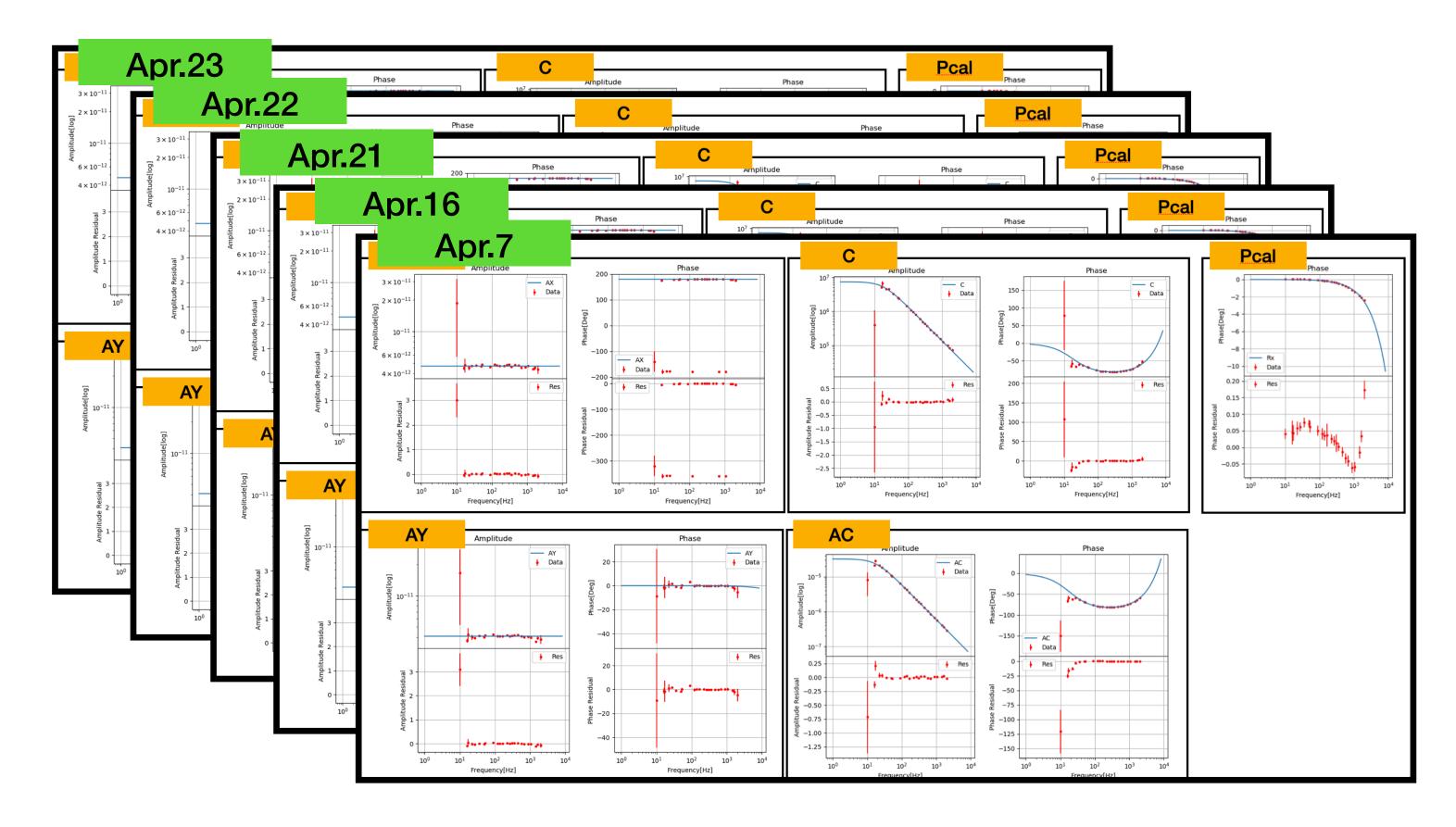


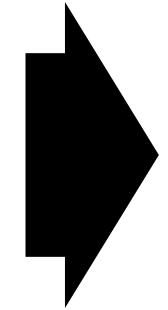


Correlation Result

Example of Data-1: Apr. 7



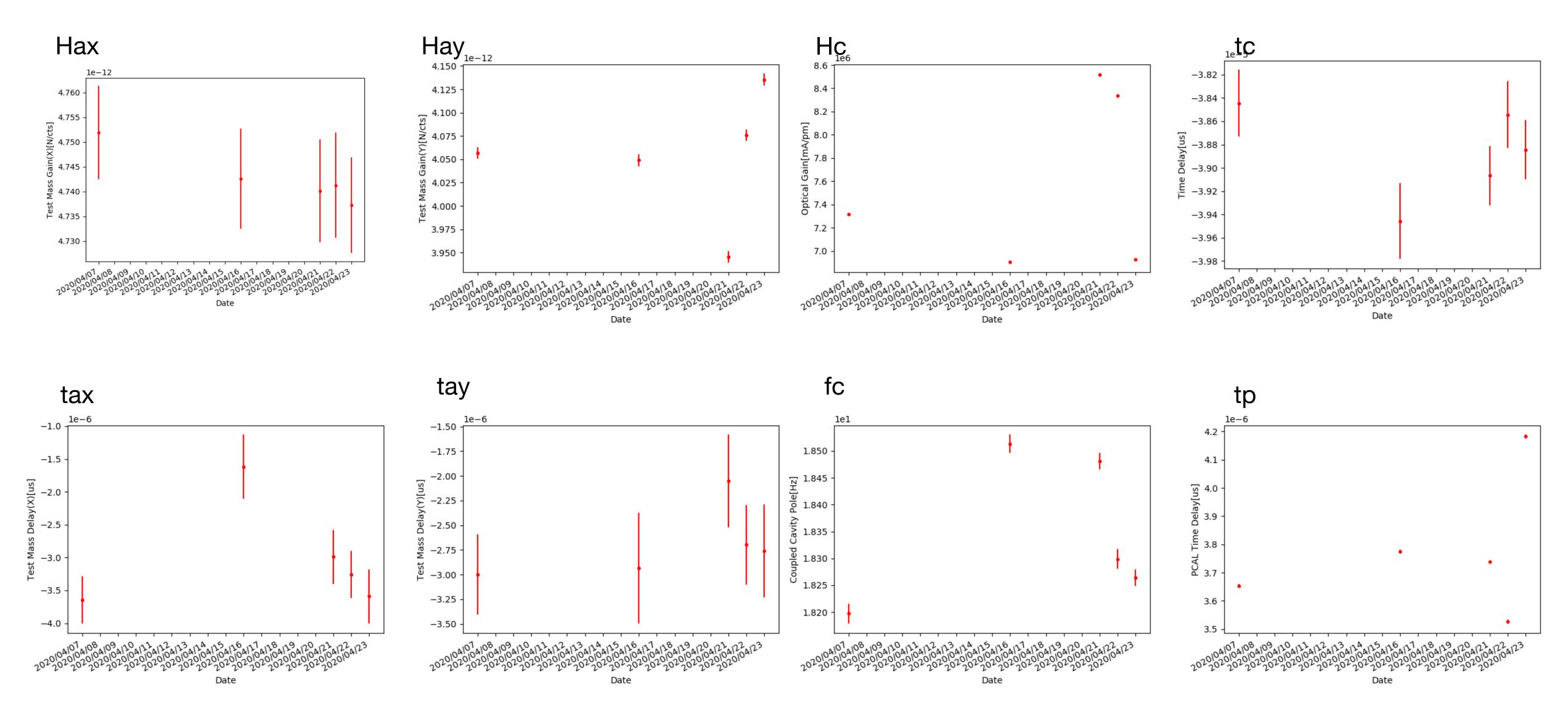




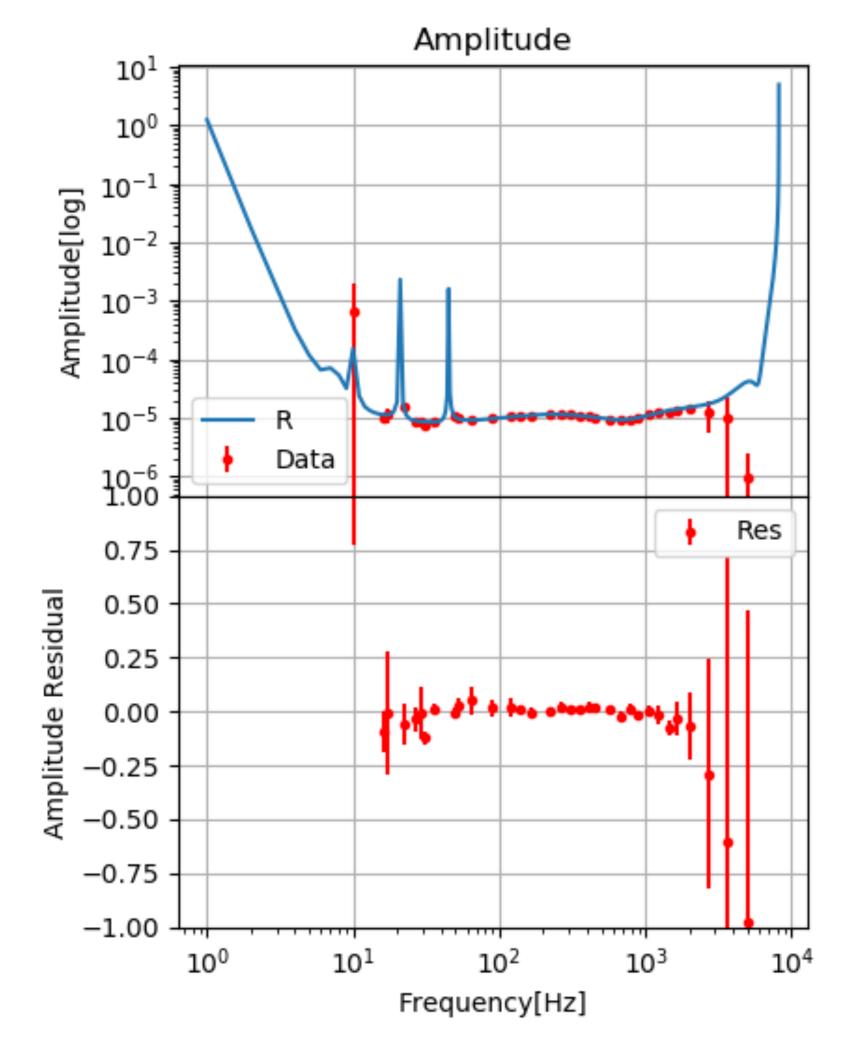
By checking time trends of 2 weeks data

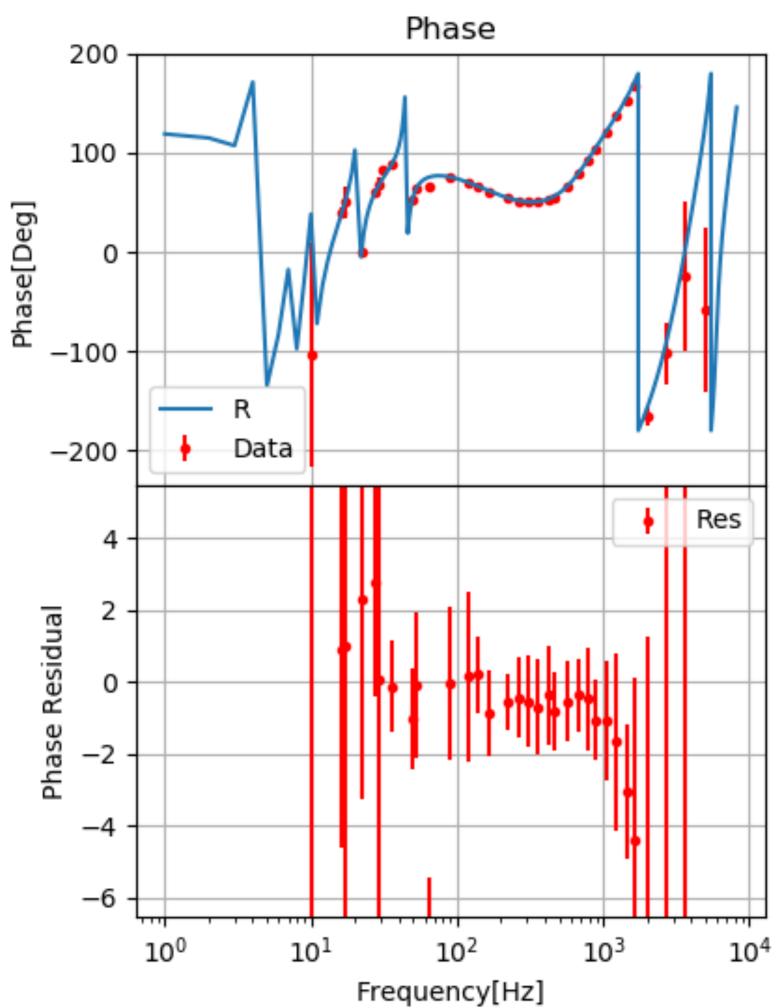
Fitting Result

$$\overrightarrow{\theta} = (H_{ax}, \tau_{ax}, H_{ay}, \tau_{ay}, H_c, \tau_c, H_p, \tau_p)$$



Response function





$$h(t) = R * d_{err} = \frac{1}{L} \left(\frac{1+G}{C}\right) d_{err}$$

$$\frac{\delta h(t)}{h(t)} = 1 - \frac{\delta R}{R} \frac{\sigma h(f,t)}{R^{(model)}} = \frac{\sigma_h(f,t)}{h}$$

Summary

- DARM model is crucial for improving the accuracy of interferometer.
- We use external sources(Pcal) to calibrate the model.
- Future plan: With another pipeline, we can crosscheck them.

The End

Appendix(G)

BodePlot_0407_G

