

Stellar Mass Black Hole Formation and Multimessenger Signals from Core-Collapse Supernovae

7th KAGRA International Workshop, NCU, Taiwan

arXiv:2010.02453

Kuo-Chuan Pan (潘國全) Institute of Astronomy

National Tsing Hua University, Taiwan

December 19th, 2020

Outline

- Introduction
- Core-Collapse Supernova Engines
- Stellar Mass Black Hole Formation
- Multimessenger signatures
- Detectability of such events
- Conclusions

ingines mation

A New Era of Gravitational Wave Astrophysics

EVent for zon relescope

Nobelprize.org

Masses in the Stellar Graveyard in Solar Masses

Gravitational Wave Astronomy

We are expecting to detect GW emissions from core-collapse supernovae as well!

Kuo-Chuan Pan

ANTIMATTERWEBCOMICS.COM

Multi-Messenger Astrophysics

Lime-domain astronomy Gravitational wave astronomy

Multi-messenger Signals from CCSN

Kuo-Chuan Pan

Shock revival

1 day

Shock is revived

Shock is not revived

BH formation

Multi-messenger Signals from CCSN

Core bounce Core collapse

Neutrinos

Gravitational Waves

Kuo-Chuan Pan

Shock revival

Shock is revived

BH formation

Shock breakout

Masses in the Stellar Graveyard in Solar Masses

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Masses in the Stellar Graveyard

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Masses in the Stellar Graveyard in Solar Masses

Core-Collapse Supernova Engines

Collapse Physics and neutrino mechanism

Iron core collapse to ~ 30 km in less than a second. The infall speed reaches to ~0.3 c at core bounce

The core is hot and dense enough to produce a huge amount of neutrinos (~ 100B)

Kuo-Chuan Pan

Small cross section in the outer core allows efficient cooling

Shock loses energy and stalled at ~ 100 km

If a few % of neutrino's energy can be absorbed by the matter, it is enough to power the explosion

Numerical Challenge

(Magneto) hydrodynamics

General Relativity

Nuclear and Neutrino Physics

Boltzmann Transport Theory

Additional complexity:

Multi-dimensional effects, rotation, fluid and MHD instabilities, turbulences Wide range density and temperature range, Wide range of neutrino optical depth Require high accuracy (100 B vs 1B) (Adjusted from C. Ott & P. Mosta)

Kuo-Chuan Pan

Fully coupled

----- Gravity

- Nuclear EoS, nuclear reactions & neutrino interactions
- ----- Neutrino Transport

Shock Revival

Kuo-Chuan Pan

Pan et al. in prep.

18

Shock Revival

Pan et al. in prep.

Stellar Mass Black Hole Formation

Failed Supernovae

and Dec + 60:08:08.29

2003)

Kuo-Chuan Pan

The first Candidate: N6946-BH1

- NGC6946-BH1: In NGC 6946 (5.96 Mpc) at RA 20:35:27.56
- experienced an outburst in 2009, $L > 10^6 L_{sun}$ but than fading to ~10⁵ L_{sun} below its pre-outburst luminosity
- However, the surviving star could be hidden by dust ->luminous in the IR but optically obscured (Crause et al.

Supernova Progenitors

Kuo-Chuan Pan

Failed Supernovae

THE ASTROPHYSICAL JOURNAL, 857:13 (9pp), 2018 April 10

Kuo-Chuan Pan

Simulations (some technical details)

- 40 solar mass progenitor (s40) from Woosley and Heger (2007) v-constant rotation formula (Eriguchi & Muller 1985) • 3D FLASH + IDSA for Neutrino transport (Pan et al. 2016, 2017, 2018) An Effective GR Potential (Marek et al. 2006, O'Connor & Couch 2018)

- LS220 Equation of State
- 20 neutrino energy bins from 3 MeV to 300 MeV
- Minimum cell size 488 m (1 degree angular resolution)
- GPU acceleration with OpenACC (Pan et al. 2018, 2019)
- Three 3D simulations (NR, SR, FR) and one 2D counter part (NR-2D)

Overview of simulations

 $\Omega_0 = 0 \text{ rad s}^{-1}$

NR

Pan et al. (2020), arXiv:2010.02453

 $\Omega_0 = 0.5 \text{ rad s}^{-1}$

SR

$\Omega_0 = 1 \text{ rad s}^{-1}$

Explosion together with BH formation

Kuo-Chuan Pan

Pan et al. (2020), arXiv:2010.02453

Neutrino Emissions

Kuo-Chuan Pan

Pan et al. (2020), arXiv:2010.02453

Density contours at 1e12 and 1e14 g/cm^3

Pan et al. (2020), arXiv:2010.02453

Gravitational Wave Emissions KAGRA 10 5 $10^{21}h_{+}$ $\mathbf{0}$

Kuo-Chuan Pan

-10

Pan et al. (2020), arXiv:2010.02453

U

Assuming a distance at 10 kpc

Gravitational Wave Spectrogram KAGRA

Kuo-Chuan Pan

Pan et al. (2020), arXiv:2010.02453

Gravitational Wave Spectrogram KAGRA Dependence on the rotational speeds

Pan et al. (2020), arXiv:2010.02453

Kuo-Chuan Pan

Standing Accretion Shock Instability (SASI)

SASI induced rotation

Kuo-Chuan Pan

Pan et al. (2020), arXiv:2010.02453

$\omega = 0 \text{ rad/s}$

SASI induced rotation

Kuo-Chuan Pan

Pan et al. (2020), arXiv:2010.02453

Gravitational Wave from SASI KAGRA

with WWZ and HHT analysis

Detectability

GW Spectra NR

fpeak = 2104.7 Hz

SR

FR

Made by M. Szczepańczyk (Couch et al., in prep.)

cWB Analysis

SNR 30

O2 data Livingston-Hanford network **100 source angles and locations**

Frequency Plot

NR

Black: injected Red: reconstructed

Reconstructed Signal Time Frequency Map

Scalogram ((E00+E90)/2)

Made by M. Szczepańczyk (Couch et al. 2020, in prep.)

CWB Analysis

SNR 30

O2 data Livingston-Hanford network **100 source angles and locations**

Made by M. Szczepańczyk (Couch et al. 2020, in prep.)

CWB Analysis

SNR 30

O2 data Livingston-Hanford network **100 source angles and locations**

Black: injected Red: reconstructed

Made by M. Szczepańczyk (Couch et al. 2020, in prep.)

Detection Efficiency

Made by M. Szczepańczyk (Couch et al. 2020, in prep.)

41

Conclusions

- Neutrino and GW probe the SN explosion, progenitor star, and nuclear EoS NS/BH spins can be induced by spiral SASI (even in non-rotating stars). GW features from SASI (~100-200 Hz) is possible to be detected. GW from fast rotating CCSNe can be detected beyond Milky Way. Improve the detector sensitivity at kHz window is necessary for studying

- stellar mass black hole formation.

