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followed by a short, ∼50 ms, quiescent phase, in agreement
with previous results (Marek et al. 2009; Murphy et al. 2009;
Müller et al. 2013; Yakunin et al. 2017).

The dominant part of the signal lasts from ∼150 ms after
core bounce until the end of the simulation, with the frequency
growing from ∼300 to ∼2000 Hz. Despite the high-frequency
noise, most of the energy is concentrated along a relatively thin
stripe, as can be seen from the linear 3D visualization of the
spectrogram in Figure 2. Some of the earlier work predicted the
abrupt reduction in the high-frequency signal at the onset of
explosion due to the cessation of downflowing plume
excitation of the inner core (Murphy et al. 2009; Yakunin
et al. 2015). However, as was shown in Müller et al. (2013), the
high-frequency signal may persist for a certain time before this
happens, and we see the same in our model. As in Müller et al.
(2013), the post-explosion signal from our model M10_SFHo
consists of distinct “bursts” of emission, presumably caused by
the continuing accretion episodes. For another exploding model
in our study (19Me), the post-explosion signal stays strong
until the end of the simulation at ∼1.5 s after bounce, without
decaying in energy (see more in Section 3.3). The explosion is
marked by the offset ofh+D from zero, which indicates that the
shock is not spherical (the prolate explosion shifts the strain up,
while the oblate explosion shifts it down; see Murphy
et al. 2009; Müller et al. 2013; Yakunin et al. 2015).

A number of recent works (Cerdá-Durán et al. 2013; Kuroda
et al. 2016; Andresen et al. 2017; Kuroda et al. 2017; Pan
et al. 2017) pointed to a separate GW feature associated with
the SASI (see more about the SASI phenomenon, e.g., in
Blondin et al. 2003; Foglizzo et al. 2007). This signal is
expected to reside at lower frequency, typically 100–200 Hz,
and coincides in time with the periods of enhanced shock
oscillations. To test this regime in model M10_SFHo, we plot
its entropy along the polar axis in the top panel of Figure 3. The
plot shows that the shock oscillates mildly in the period
100–400 ms after bounce (these oscillations, though, are not as
vigorous as typically seen when the SASI is identified) and
before the explosion sets in. The early part of the GW
spectrogram, plotted in the bottom panel of Figure 3, indeed
shows some power excess at low frequencies in this period, and

Figure 1. Spectrogram (top) and the corresponding waveform (bottom) of the
GW signal from model M10_SFHo.

Figure 2. Linear 3D representation of the GW spectrogram from model
M10_SFHo.

Figure 3. Top panel: entropy along the north and south polar axis as a function
of time for M10_SFHo. Bottom panel: zoomed-in early part of the GW
spectrogram for this model. We associate the weak power excess at low
frequencies between 100 and 400 ms after bounce with the shock oscillations
seen in the top panel.
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2nd	candidate	as	GW	sources	
•  supernovae	

–  event	rate	:	~1/100	yr	in	our	galaxy	
–  compered	to	binary	merger,	system	is	more	spherically	symmetric	

•  less	energy	of	gravitational	waves	
–  many	numerical	simulations	show	the	existence	of	GW	signals	

2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~ n1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).
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Figure 2. Time-integrated GW energy spectra dE/df for models s27, s20,
s11.2 and s20s (top to bottom). The spectra are computed from the Fourier
transform of the entire waveform without applying a window function. The
y-axis is given in a logarithmic scale.

3.2.3 The signal in the time-frequency domain

In order to dissect the signal further, we apply a short-time Fourier
transform (STFT) to our waveforms. For a discrete time series, the
STFT is obtained by applying the discrete Fourier transform (DFT)
to the signal with a sliding window. In this work, we define the DFT,
X̃k , as follows:

X̃k(fk) = 1
M

M∑

m=1

xme−2πikm/N , (14)

Here, xm is the time series obtained by sampling the underlying
continuous signal at M discrete times. fk = k/T is the frequency of
bin k, where T is the duration of the signal.

The resulting amplitude spectrograms for a sliding window of
50 ms are shown in Fig. 3. The spectrograms show the sum of
the squared Fourier components of the cross and plus polarization
modes, |Ã+|2 + |Ã×|2. Before applying the DFT, we convolve the
signal with a Kaiser window with shape parameter β = 2.5. Fre-
quencies below 50 Hz and above 1100 Hz are filtered out of the
resulting DFT. The amplitude spectrograms are computed for the
same two observer directions as before.

Figure 3. Amplitude spectrograms for a sliding window of 50 ms and two different observer directions, summed over the two polarization modes (|Ã+|2 +
|Ã×|2). The different rows show the results for models s27, s20, s20s and s11.2. (top to bottom). The two columns show the spectrograms for two different
viewing angles, the right and the left column represent observers situated along the z-axis (pole) and x-axis (equator) of the computational grid, respectively.
The time is given in ms after core bounce. Vertical lines bracket SASI episodes. All panels have been normalized by the same global factor. The colour bar is
given in a logarithmic scale.
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Figure 11. This figure shows the GW signal (upper panels), the corresponding spectrograms (middle panels), and the spectrograms with a selection of modes
overplotted (lower panels) for models s20 (left) and 35OC (right). Solid lines and dashed lines are used to indicate that the calculations were made using GP

and Gα , respectively. Note that for model s20 those two lines overlap.

with a higher frequency. The main features can be explained by the
2g1 mode and the 2p1 mode. The f mode and all p modes up to
order 5 are also clearly visible, albeit with lower amplitudes. We
note in particular that our computation of the l = 0 mode is able
to reproduce the characteristic feature of this mode close to black
hole formation, namely that its frequency goes to zero at the onset of
instability (Cerdá-Durán et al. 2013), as predicted by Chandrasekhar
(1964).

In addition to estimating the effect of the definition of G in our
mode comparison, we also test its effect on the expression for the

Brunt–Väisälä frequency. In this work we first perform an angular
average of the simulation data and then we compute the Brunt–
Väisälä frequency as N2 = GB, G and B being the radial component
of the vectors Gi and Bi . Alternatively one can compute N2 = GiBi ,
on the 2D grid of the simulation, and then perform the angular
average to obtain 1D profiles of N2. For the fast-rotating case, the
second procedure takes into account the non-radial components of
Gi and Bi , which are otherwise neglected in the first procedure.
We have computed the eigenmodes using both definitions and the

MNRAS 482, 3967–3988 (2019)
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g-mode	oscillations?	
•  2D	non-rotation	with	convection	by	Muller	et	al.	(2013)	

à	excitations	of	specific	frequency	
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PNS

the convection & the standing  
accretion-shock instability
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FIG. 10: For the various progenitor models, the frequencies of f -, p1-, and p2-modes are shown as a function of the normalized average
density of PNSs, where the normalized average density is defined by (MPNS/1.4M⊙)1/2(RPNS/10km)−3/2. The thick solid line in each
panel corresponds to the universal relation shown as Eq. (19).

p1, and p2-modes for the various progenitor models are shown in Fig. 10, where the frequencies are calculated with the (Ye, s)
distributions inside the star as in Fig. 6. In this figure, LS220M11.2, LS220M15.0, LS220M27.0, and LS220M40.0 correspond
to the results obtained with the progenitor models with Mpro = 11.2M⊙, 15.0M⊙, 27.0M⊙, and 40.0M⊙ for LS220 EOS,
respectively, while ShenM15.0 is the results obtained with the progenitor model with Mpro = 15.0M⊙ for Shen EOS. From this
figure, one can observe that the frequencies of PNSs are almost on the same line as a function of the average density of PNS,
i.e., the frequencies are almost independent from the progenitor models. Thus, we can get an universal relation between the
frequencies from the PNSs and the average density of PNSs, such as

f (PNS)
i (Hz) ≈ c0

i + c1
i

(
MPNS

1.4M⊙

)1/2 (
RPNS

10 km

)−3/2

, (19)

where i denotes f , p1, and p2 for f -, p1, and p2-modes, and c0
i and c1

i are some constants irrespective of the progenitor models
of PNSs. The coefficients in this relation are shown in Table III and the universal relations obtained here are also plotted in Fig.
10 with thick solid line. Note that one can see the deviation of the frequencies from the relation [Eq. (19)] in the region of higher
average density. This may be an effect of the mass accretion from the outer region of PNS.

TABLE III: Coefficients in the universal relation shown as Eq. (19) for the various progenitor models of PNSs.

modes c0
i (Hz) c1

i (Hz)
f −29.48 3690

p1 343.9 5352

p2 640.8 7435

With respect to the characteristic gravitational waves radiating after bounce of core-collapse supernovae, the evidence of
signal due to the convection and the standing accretion-shock instability has also been reported [32, 33], which is associated
with the g-mode oscillations around (and above) the surface of PNSs. In fact, the frequencies can be well-expressed by using
the radius and mass of PNSs as

fg ≈ 1
2π

GMPNS

R2
PNS

(
1.1mn

⟨Eν̄e⟩

)1/2 (
1 − GMPNS

c2RPNS

)2

, (20)

where mn and ⟨Eν̄e⟩ denote the neutron mass and the mean energy of electron antineutrinos [32]. That is, the frequencies es-
sentially depend on MPNS/R2

PNS, which is completely different from the f -mode frequencies depending on (MPNS/R3
PNS)1/2

as shown above. Thus, carefully observing the frequencies of gravitational waves radiating from the PNSs in supernovae, one
might be possible to determine the mass and radius of PNSs via Eqs. (19) and (20). For example, one might observe the time
evolution of gravitational wave spectra from the PNS for Mpro = 15M⊙ and LS220, as shown in Fig. 11. We remark that, to
calculate the g-mode frequencies with Eq. (20), we adopt the ⟨Eν̄e⟩ distribution given by

⟨Eν̄e⟩ =

{
3t/400 + 13 (0 ≤ t ≤ 400 msec)
16 (400 msec ≤ t)

, (21)

(surface) 
g-mode??

Brunt-Vaisala	frequency	@	PNS	surface	



GW	from	PSNs	

•  Numerical	simulations	
tell	us	the	GW	spectra.	

•  difficult		
–  to	extract	PNS	physics		

•  We	adopt	the	
perturbation	approach	
to	see	the	physic	behind	
the	GWs	by	identifying	
them	with	the	freq.	
from	PNS.	

2020/12/18	KIW7@Taipei	&	zoom	

A NEW GRAVITATIONAL-WAVE SIGNATURE OF SASI ACTIVITIES 3

Fig. 1.— In each set of panels, we plot, top; gravitational wave amplitude of plus mode A+ [cm], bottom; the characteristic wave strain
in frequency-time domain h̃ in a logarithmic scale which is over plotted by the expected peak frequency Fpeak (black line denoted by “A”).
“B” indicates the low frequency component. The component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009;
Müller et al. 2013). The component “B” is considered to be associated with the SASI activities (see Sec. 3). Left and right panels are for
TM1 and SFHx, respectively. We mention that SFHx (left) and TM1 (right) are softer and stiffer EoS models, respectively.

Fig. 2.— Snapshots of the entropy distribution (kB baryon−1) for models SFHx and TM1 (top left; Tpb = 150 ms of SFHx, top right;
Tpb = 237 ms of SFHx, bottom left; Tpb = 358 ms of SFHx, bottom right; Tpb = 358 ms of TM1). The contours on the cross sections in
the x = 0 (back right), y = 0 (back left), and z = 0 (bottom) planes are, respectively projected on the sidewalls of the graphs. The 90◦

wedge on the near side is excised to see the internal structure. Note that to see the entropy structure clearly in each dynamical phase, we
change the maximum entropy in the colour bar as smax = 16, 20 and 22 kB baryon−1 for Tpb = 150, 237 and 358 ms, respectively.

Kuroda+	16	



eigenfrequencies	
•  identify	via	linear	analysis	
•  variables	=	background	+	perturbations	

•  expand	the	perturbed	variables	

–  if	background	is	spherically	symmetric,	the	perturbations	are	
independent	from	m	

–  ω	is	an	eigenfrequencies	of	star	for	each	l, where	f	=	ω/2π	
–  subscript	denotes	the	number	of	radial	nodes	in	eigenfunction	
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f = f0 +δ f

δ f (t,r,θ ,φ) = δ f (r)eiωtYlm (θ ,φ)

frequency
f

~ a few kHz

p1 p2 p3 …	g1g2g3…	

frequency
w1 w2 w3 …	

≳10kHz

fluid

spacetime



non-radial	Oscillations		
in	(proto)-neutron	stars	

•  axial	type	oscillations	
–  no	stellar	deformation,	no	density	variation	

•  w-modes	(spactime)	:	oscillations	of	specetime	itself	~	M/R		

•  polar	type	oscillations	
–  with	density	variation	&	stellar	deformation		
–  important	for	considering	the	GWs	emission	

•  f-mode	(fundamental)	~	(M/R3)1/2	
•  p-modes	(pressure)	:	sound	speed	crossing	~	(M/R3)1/2	

•  g-modes	(gravity)	:	thermal/composition	gradients	~	B-V	frequency	
•  Alfven	modes	
•  inertial	modes	(effect	of	rotation)		
•  w-modes	(spactime)	:	oscillations	of	specetime	itself	~	M/R	

2020/12/18	KIW7@Taipei	&	zoom	



what	we	learn	from	GW	obs.	
•  Via	direct	observations	of	GWs,	one	may	extract	the	PNS	or	NS	properties.	

–  Asteroseismology		
•  In	fact,	it	is	known	for	cold	neutron	stars	that	

–  f-mode,	which	is	a	acoustic	oscillation,	is	characterized	by	the	stellar	average	
density	

–  w-mode,	which	is	a	spacetime	oscillation,	is	characterized	by	the	stellar	
compactness	

•  If	similar	characterization	is	possible,	one	could	extract	the	PNS	average	
density	and	compactness,	via	the	simultaneous	observations	of	f-	and	w-
modes	GWs.	

2020/12/18	KIW7@Taipei	&	zoom	

Although some of these EOS might be outdated, none of them is
ruled out by present observations. Furthermore, the range of
stiffness of the EOS listed by Arnett & Bowers is still relevant
today. This is important for the present study. In order for our
analysis to be robust it is necessary that our sample of EOS spans the
anticipated range of stiffness. However, we have also included three
more modern EOS: one of the models of Wiringa, Ficks &
Fabrocini (1988) and two models from Glendenning (1985). For
the EOS that were also considered by Lindblom & Detweiler (1983)
we have chosen identical stellar models to facilitate a comparison of
the results. Finally, we have only included stellar models the masses
and radii of which are within the limits accepted by current
observations (Finn 1994; van Kerkwijk, van Paradijs & Zuiderwijk
1995).

2 W H AT C A N W E L E A R N F RO M
O B S E RVAT I O N S ?

Our present understanding of neutron stars comes mainly from
X-ray and radio-timing observations. These observations provide
some insight into the structure of these objects and the properties of
supranuclear matter. The most commonly and accurately observed
parameter is the rotation period, and we know that radio pulsars can
spin very fast (the shortest observed period being the 1.56 ms of
PSR 1937+21). Another basic observable, that can be obtained (in a
few cases) with some accuracy from present day observations, is the
mass of the neutron star. As Finn (1994) has shown, the
observations of radio pulsars indicate that 1:01 < M=M( < 1:64.

Similarly, van Kerkwijk et al. (1995) find that data for X-ray pulsars
indicate 1:04 < M=M( < 1:88. The data used in these two studies is
actually consistent with (if one includes error bars) M < 1:44 M(.
We now recall that the various EOS that have been proposed by
theoretical physicists can be divided into two major categories: (i)
the ‘soft’ EOS, which typically lead to neutron star models with
maximum masses around 1:4 M( and radii usually smaller than 10
km, and (ii) the ‘stiff’ EOS with the maximum values M , 1:8 M(

and R , 15 km (Arnett & Bowers 1977). From this one can deduce
that, even though the constraint put on the neutron star mass by
present-day observations seems strong, it does not rule out many of
the proposed EOS. In order to arrive at a more useful result we
are likely to need detailed observations of the stellar radius
also. Unfortunately, available data provide little information
about the radius. The recent observations of quasiperiodic oscilla-
tions in low-mass X-ray binaries indicate that R < 6M, but again
this is not a severe constraint. Although a number of attempts have
been made, using either X-ray observations (Lewin, van Paradijs &
Taam 1993) or the limiting spin period of neutron stars (Friedman,
Ipser & Parker 1986), to put constraints on the mass–radius
relation, we do not yet have a method which can provide the desired
answer.

2.1 A detection scenario

In view of this situation, any method that can be used to infer
neutron star parameters is a welcome addition. Of specific interest
may be the new possibilities offered once gravitational wave
observations become reality. An obvious question is the extent to
which one can solve the inverse problem in gravitational wave

Towards gravitational wave asteroseismology 1061
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Figure 1. The numerically obtained f mode frequencies plotted as functions
of the mean stellar density (M and R are in km and qf mode in kHz).

Figure 2. The normalized damping time of the f modes as functions of the
stellar compactness (M and R are in km and tf mode in s).

Downloaded from https://academic.oup.com/mnras/article-abstract/299/4/1059/1108897 by Kyoto Univeristy user on 16 October 2019

fluid oscillation modes of a star, and we consequently expect that
qf , r̄1=2. That is, we should normalize the f mode frequency with
the average density of the star. The result of doing this is shown in
Fig. 1. From this figure it is apparent that the relation between the f
mode frequencies and the mean density is almost linear, and a linear
fitting leads to the simple relation

qf ðkHzÞ < 0:78 þ 1:635
M̄

R̄3

✓ ◆1=2

; ð5Þ

where we have introduced the dimensionless variables

M̄ ¼
M

1:4 M(

and R̄ ¼
R

10 km
: ð6Þ

From equation (5) it follows that the typical f mode frequency is
around 2.4 kHz.

To deduce a corresponding relation for the damping rate of the f
mode, we can use the rough estimate given by the quadrupole
formula. That is, the damping time should follow from

tf ,
oscillation energy

power emitted in GWs
, R

R
M

✓ ◆3

: ð7Þ

Using this normalization we plot the functional ðtf M
3=R4Þ¹1 as a

function of the stellar compactness, cf. Fig. 2. The data shown in
this figure lead to a relation between the damping time of the f mode
and the stellar parameters M and R,

1
tf ðsÞ

<
M̄3

R̄4 22:85 ¹ 14:65
M̄
R̄

✓ ◆ �
: ð8Þ

The small deviation of the numerical data from the above formula is

apparent in Fig. 2, and one can easily see that a typical value for the
damping time of the f mode is a tenth of a second.

For the damping rate of the p modes the situation is not so
favourable. This is because the damping of the p modes is more
sensitive to changes in the modal distribution inside the star. Thus,
different EOS lead to rather different p mode damping rates, cf.
Fig. 3. Previous evidence for polytropes (Andersson & Kokkotas
1997) actually indicate that this would be the case. Clearly, an
empirical relation based on the data in Fig. 3 would not be very
robust.

The situation is slightly better if we consider the oscillation
frequency of the p mode. From the data shown in Fig. 4 we can
deduce a relation between the p mode frequency and the parameters
of the star,

qpðkHzÞ <
1
M̄

1:75 þ 5:59
M̄
R̄

✓ ◆
; ð9Þ

and we see that a typical p mode frequency is around 7 kHz.
Although the data for several EOS deviate significantly from (9) it is
still a useful result. Stellar masses and radii deduced from it will not
be as accurate as ones based on f mode data, but on the other hand, if
M and R are obtained in some other way (say, from a combination of
observed f - and w modes) the p mode can be used to deduce the
relevant EOS.

That empirical relations based on p mode data would be less
robust and useful than those for the f mode was expected, since the p
modes are sensitive to changes in the matter distribution inside the
star. In contrast, the gravitational wave w modes should lead to
very robust results. It is well known (Kokkotas & Schutz 1992;
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Figure 5. The functional Rqw as a function of the compactness of the star (M
and R are in km and qw mode in kHz).

Figure 6. The functional M=tw as a function of the compactness of the star
(M and R are in km and tw mode in ms).
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PNS	models	(HS+17)	
•  we	adopt	the	results	of	3D-GR	simulations	of	core-collapse	supernovae	

(Kuroda	et	al.	2016)		
–  progenitor	mass	=	15M⊙	

–  EOS	:	SFHx	(2.13M⊙)	&	TM1	(2.21M⊙)	

–  RPNS	is	defined	withρs	=	1010	g/cm3	

–  using	the	radial	profiles	as	a	background	PNS	model,	the	eigenfrequencies	are	
determined.	
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(Tpb ¼ 48ms), the early (Tpb ¼ 148ms) and late
(Tpb ¼ 248ms) nonlinear phase covered in the simulation,
respectively (see also Fig. 2 in [12]). The maximum density
for SFHx (left panel, ρ≳ 2 × 1014 g cm−3) is a few 10%
higher compared to TM1 (right panel). This is because
SFHx is softer than TM1 as mentioned above. In fact, Fig. 2
shows that the PNS radius (left panel) is more compact for
SFHx. Here the surface of the PNS is defined at a fiducial
rest-mass density of ρs ¼ 1010 g cm−3, which is relatively
lower in the literature (e.g., [56]), but necessary in order to
include the nascent PNS from the three-dimensional GR
models with limited simulation time after bounce. In right
panel, we plot gravitational mass of the PNS MPNS (evalu-
ated by Eq. (A1) in Appendix A) for given spherically
averaged hydro and metric datas. We shortly mention the
accuracy of MPNS which is used later in our analysis.
Although the baryon mass conservation is strictly satisfied
because of our conservative formula, the gravitational mass
is not conserved with the same accuracy in general (the
energy loss by gravitational waves is negligible for CCSNe)
in the BSSN formalism. The violation can be ∼1% in our
code [47]. It is also not straightforward to estimate the
gravitational mass of the PNS with taking into account
the non-negligible energy loss by neutrinos. Furthermorewe
first take spherically average with a simple zeroth order

spacial interpolation from three-dimensional Cartesian to
one-dimensional spherical coordinates, and afterward we
evaluate MPNS. Therefore, the gravitational mass of the
PNS can differ from its true value of the order of
∼1%ð∼0.01M⊙Þ. In Appendix A, we discuss impact of
numerical accuracy in MPNS for our results.
The left panel of Fig. 3 shows the evolution of the

“compactness” of the PNS that is defined by MPNS=RPNS
for SFHx (red line) and TM1 (blue line). As one would
imagine, the compactness of the PNS is higher for SFHx
compared to TM1 even after we consider the inaccuracy of
∼1% in MPNS. The right panel of Fig. 3 depicts the time
evolution ofMPNS as a function ofRPNS. The PNS with the
softer EOS (SFHx) evolves from larger to smaller PNS
radius with bigger to smaller enclosed mass compared to
the stiffer EOS (TM1). Depending on the stiffness of
the EOSs, one can see that the evolution track in the
MPNS −RPNS plane differs significantly.
To extract the metric from the background models in a

suitable form, we perform the following coordinate trans-
formation. In the background models obtained by numeri-
cal relativity simulation (e.g., [12]), the line element is
given as

ds2 ¼ −α2dt2 þ γijðdxi þ β idtÞðdxj þ β jdtÞ; ð1Þ

FIG. 1. (Spherically-averaged) radial profiles of the rest-mass density at 48, 148, and 248 ms after core bounce. The left and right panel
corresponds to SFHx and TM1, respectively.

FIG. 2. Time evolution of the PNS radius (left panel) and its gravitational mass (right panel) as a function of the postbounce time. The
circles and diamonds corresponds to SFHx and TM1, respectively. The surface of the PNS is defined at a fiducial rest-mass density of
ρs ¼ 1010 g cm−3.
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M-R	evolution	after	core-bounce	
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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evolution	of	w1-modes	
•  frequencies	depend	on	the	EOS.	

–  increasing	with	time	
–  can	be	characterized	well	by	MPNS/RPNS	

•  as	for	cold	NS,	we	can	get	the	fitting	formula,	almost	independent	from	EOS	
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X 00 þ ðΦ0 − Λ0ÞX 0

þ e2Λ
!
ω2e−2Φ −

lðlþ 1Þ
r2

þ 6m
r3

− 4πðε − pÞ
"
X ¼ 0:

ð7Þ

By imposing appropriate boundary conditions, the problem
to solve becomes the eigenvalue problem. The boundary
conditions are the regularity condition at the stellar center
and the outgoing wave condition at spatial infinity.
The eigenvalue ω becomes a complex number, because

GWs carry out the oscillation energy, where the real and
imaginary parts of ω correspond to the oscillation fre-
quency (f ¼ ReðωÞ=2π) and damping rate (1=τ ¼ ImðωÞ),
respectively, where τ corresponds to the damping time of
each mode. To determine such a complex frequency, we
adopt the continuous fractional method proposed by
Leaver [59].

IV. ASTEROSEISMOLOGY WITH w MODES

The spacetime modes (w modes) have two families, i.e.,
wII and “ordinary” w modes [44,45]. As shown in
Appendix B, for cold NSs, a few wII modes are excited,
whose damping rate [ImðωÞ] is larger than its oscillation
frequency (ReðωÞ). On the other hand, infinite number of w
modes can exist, which are referred to as w1; w2; % % % ; wn

modes in order from the lowest oscillation frequency. So, in
the similar way to cold NSs, we identify the spacetime
modes with ReðωÞ larger than ImðωÞ as the “ordinary” w
modes for PNSs. Hereafter, the “ordinary” w modes are
called just as the w modes.
In Fig. 4, we show the frequency and damping rate of the

axial spacetime modes for the PNS models at the two
postbounce times of Tpb ¼ 108 ms (circles) and 248 ms
(diamonds), where the left and right panels correspond to
the results with SFHx and TM1 (EOS). In this figure, the
open marks denote the wII modes, while the solid marks
denote the w modes. Thus, the leftmost solid marks
correspond to the w1 mode (fundamental w mode) for
each PNS model. From this figure, one can observe that the
damping rate of wn mode is almost constant independently
of the index n, which is different behavior from the case of
cold NSs as shown in Fig. 10. In fact, the damping rate of
wn modes increase with the index n for cold NSs. With
respect to the w1 mode (Fig. 5), we show the time evolution
of the frequency (fw1

) and damping time (τw1
) as a function

of postbounce time for SFHx and TM1, respectively. We
remark that the damping time is the time with which the
GW amplitude reduces by 1=e. In the early phase of
w1-mode oscillations of PNSs, the frequency is only a
few kHz, which is significantly smaller than that for cold
NSs, while the damping time is around 0.1 ms, which is
much larger than that for cold NSs. This is good news from

FIG. 4. Frequency and damping rate of the axial spacetime modes for PNSs. The left and right panels correspond to the results for
SFHx and TM1 EOSs, respectively, where the circles and diamonds are shown for the PNS models at 108 and 248 ms after core bounce.
The open and solid marks correspond to the wII and “ordinary” w modes.

FIG. 5. Evolutions of frequency ðfw1
Þ and damping time ðτw1

Þ for the w1 mode. The circles and diamonds correspond to SFHx and
TM1, respectively.
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈
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20.92 − 9.14
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"
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10 km
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈
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27.99 − 12.02
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈
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27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as
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1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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evolution	of	f-mode	
•  frequencies	can	be	expressed	well	by	the	average	density	independent	of	

the	EOS	(and	progenitor	mass)	
•  we	derive	the	fitting	formula	as	a	function	of	MPNS/RPNS3	
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS −RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
4 kHz
fw1

"
1=2

!
10 kpc
D

"
;

ð13Þ

where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS −RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23
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where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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* Note that we neglect the g-mode oscillations in this study



determination	of	EOS	
•  GW	spectra	evolutions	ff(t)	&	fw1(t)		

à	evolutions	of	MPNS/RPNS3	&	MPNS/RPNS		

•  one	can	determine	(MPNS,	RPNS)	at	each	time	after	core	bounce	
		à	determination	of	the	EOS	

•  unlike	cold	NS	cases,	in	principle	one	can	determine	the	EOS	even	with	
ONE	GW	event	!	
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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different	two	approaches	
•  PNS	models,	whose	surface	defined	with	a	specific	surface	density,	ρs	

(Model	I)	
–  Sotani	&	Takiwaki	16;	1D-Newton,	without	rotation	
–  Sotani+17;	3D-GR,	without	rotation	
–  Morozova+18;	2D-effective	GR,	without	rotation	
–  Radice+19;	3D-effective	GR,	without	rotation	
–  Sotani+19;	3D-GR,	without	rotation	
–  Sotani	&	Sumiyoshi	19,;	1D-GR	black	hole	formation	without	rotation	
–  Sotani	&	Takiwaki	20a,	b,	c;	2D-effective	GR	without	rotation	

•  Numerical	region	up	to	the	shock	radius,	Rshock	(Model	II)	
–  Torres-Forne+18;		2D-GR,	with	rotation	
–  Torres-Forne+19a;	2D-GR,	with	rotation/2D-effective	GR,	without	rotation	
–  Torres-Forne+19b;	1D-Newton/effective	GR/GR,	without	rotation	

•  With	either	I	or	II,	to	prepare	the	background	PNS	model	for	linear	
analysis,	the	numerical	data	is	averaged	in	the	angular	direction,	assuming	
the	static	solution	at	each	time	step.	
–  linear	analysis	on	the	static,	spherically	background	model.	
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difference	in	two	approaches	
•  computational	domain	

–  Model	I	:	only	inside	RPNS	defined	by	ρs	
–  Model	II	:	up	to	Rshock	

•  Boundary	condition	for	solving	the	eigenvalue	problem	
–  Model	I	:	Δp	=	0	@r	=	RPNS	
–  Model	II	:	δξr	=	0	@r	=	Rshock	
–  mathematically,	problem	to	solve	is	complete	different	
–  for	the	both	models,	the	BC	is	a	kind	of	assumption	(not	exact	one)	

•  advantage	
–  Model	I	:	matter	motion	is	relatively	small	

						mode	classification	is	as	usual	
–  Model	II	:	boundary	is	uniquely	determined	

•  disadvantage	
–  Model	I	:	uncertainty	in	choice	of	ρs	
–  Model	II	:	matter	motion	may	not	be	negligible	outside	RPNS	

						mode	classifications	is	different	from	the	standard	one.		
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avoided	crossing	in	GW	frequency	
(Sotani&Takiwaki	20b)	

•  in	the	early	phase,	one	can	observe	the	phenomena	of	avoided	crossing	
between	the	eigenmodes.	

•  even	in	later	phase,	one	can	still	observe	between	gi-modes		
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.
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the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 6. In the left-hand panel, frequencies of the f- and g1-modes are shown as a function of the square root of the PNS average density, where the thick
solid and the thick dotted lines are the fitting formula given by equations (7) and (8). In the right-hand panel, frequencies of the f- and g1-modes are shown as a
function of the surface gravity of the PNS, where the thick-solid line denote the fitting formula given by equation (9).

Figure 7. Characteristic gravitational wave frequencies extracted by the time–frequency analysis (Kawahara et al. 2018) from the general relativistic 3D
numerical simulation with SFHx (Kuroda et al. 2016) in the left-hand panel. The characteristic gravitational frequencies speculated with the avoided crossing,
using the result shown in the left-hand panel, in the right-hand panel.

correspondence mentioned here is just a speculation, but it would
be confirmed in the future via more complicated analysis, e.g. with
which one can distinguish the left and right-hand panels in Fig. 7.

4 C O N C L U S I O N S

In order to understand the ramp up signals of gravitational waves
appearing in the numerical simulations, we made a linear perturbation
analysis by solving the eigenvalue problem on the PNS models,
which are produced by the 2D numerical simulation with 2.9M⊙
He star as a progenitor model and with LS220 EOS. We found that
the ramp up signals corresponds well to the g1-mode in the early
phase and to the f-mode after avoided crossing between the f- and
g1-modes of the PNS model. The results are basically consistent with
the previous work (Morozova et al. 2018; Sotani & Sumiyoshi 2019;
Sotani & Takiwaki 2020; Torres-Forné et al. 2019a). In addition,
we successfully found the fitting formula for the g1- and f-mode
frequencies, which correspond to the ramp up signals, as a function
of the PNS average density. Thus, assuming that the ramp up signals
shown in numerical simulations are a principal gravitational wave
signal after supernova explosion, one can observationally extract the
time evolution of the PNS average density via the direct observation
of the gravitational waves using the fitting formula we found in this
study. This is an important information for constraining the EOS
for a high-density region. We also confirmed that the f- and g1-
mode frequencies are almost independent of the selection of the PNS
surface density in the later phase, i.e. after ∼0.3 s after core bounce,
although the eigenfrequencies of the PNSs generally depend strongly

on the selection of the surface density. Furthermore, we pointed out
the possibility that the avoided crossing may appear even in the
previous numerical simulations.

In the end, we have to mention a defect in this study. First, in
this study, we simply adopt the relativistic Cowling approximation.
But, for cold neutron stars, it is known that the eigenfrequencies
calculated with the Cowling approximation can deviate from those
with full perturbations (without the approximation), e.g. the f-mode
frequency has as large as ∼ 20 per cent error (Yoshida & Kojima
1997), although one can qualitatively discuss the behaviour of
the eigenfrequencies. Secondly, the numerical simulations, whose
gravitational wave signals are compared to the frequencies obtained
by linear analysis, have been done in Newtonian gravity with the
phenomenological general relativistic effect. That is, the gravitational
wave signals appearing in the numerical simulations in general
relativity may deviate from those considered in this study. Anyway,
in order to verify our conclusion in this study, we have to make a
linear analysis with full perturbations and compare the calculated
eigenfrequencies to the gravitational wave signals obtained via
numerical simulation in general relativity. Such a study will be done
in the future.
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we successfully found the fitting formula for the g1- and f-mode
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calculated with the Cowling approximation can deviate from those
with full perturbations (without the approximation), e.g. the f-mode
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phenomenological general relativistic effect. That is, the gravitational
wave signals appearing in the numerical simulations in general
relativity may deviate from those considered in this study. Anyway,
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linear analysis with full perturbations and compare the calculated
eigenfrequencies to the gravitational wave signals obtained via
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2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~ n1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).
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Comment	on	uncertainty		
in	ρs	for	Model	I	

•  in	the	late	phase	after	core	bounce,	e.g.,	~	500ms,	f-mode	freq.	becomes	almost	
independent	of	the	choice	of	ρs	(Morozova+18)	

•  we	also	confirm	this	feature,	i.e.,	f-	&	g1-modes	in	later	phase	are	almost		
independent	of	ρs,	where	g1-mode	decreases	with	time	(Sotani	&	Takiwaki	20b).	
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At the same time, the frequency of the fundamental mode in
Figure 6 is almost insensitive to the position of the outer
boundary, and the low-order g -modes depend weakly on it.

Importantly, this shows that the dominant GW frequency is not
just proportional to the Brunt–Väisälä frequency at the surface
of the PNS, as was suggested in earlier work. Indeed, Figure 4
shows that the three black lines corresponding to the different
outer boundary locations pass through very different values of
the Brunt–Väisälä frequency. The fact that the fundamental
quadrupolar eigenfrequency in Figure 6 is nearly independent
of the position of the outer boundary tells us that the dominant
frequency of the GW signal is defined by the entire structure of
the PNS, rather than by its surface characteristics alone.
The left panel of Figure 7 illustrates the time evolution of the

radial eigenfunction ηr for the l=2 modes associated with
the dominant frequency of the GW signal. The eigenfunctions
are normalized to 1 and plotted as a function of radial
coordinate from the innermost grid point up to the location of
the outer boundary. In Figure 7, they are shifted along the y-
axis according to the time after bounce at which they are
calculated (the time is indicated on the left side of the panel and
directed downward). As we already mentioned, starting from
∼400 ms after bounce and until the end of the simulation, the
main signal is represented by the f-mode, which has the largest
amplitude at the PNS boundary surface and gradually decreases
toward the center. Before that, in the time interval between
∼200 and ∼400 ms, this mode is smoothly connected to a g -
mode having two radial nodes (see also the left panel of
Figure 5). The right panel of Figure 7 shows the energy density
� defined as (Torres-Forné et al. 2018)

�
s
p
r h

h
= + + ^

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )l l

r8
1 19r

2
2

2

2

for the corresponding eigenfunctions of the left panel. The
figure shows that the shape of the fundamental eigenfunction is
very similar in the case of the Cowling approximation (black
lines) and in the case when da ¹ 0 (red lines). The energy
density of the modes shows less agreement. Note that the
definition of � contains the mass density, which is larger in the
inner region than at the the surface of the PNS. Therefore, even
a barely visible disagreement between the eigenfunctions in the

Figure 5. Eigenfrequencies σ/2π of the l=2 modes compared to the GW spectrogram from model M10_SFHo. Each digit represents the number of nodes in the
corresponding mode. The left panel shows the results obtained using the Cowling approximation, while the right panel shows the solution of the full system of
Equations (8)–(11). In the right panel, the dominant feature of the spectrogram is well described by the fundamental (0 radial nodes) mode starting from ∼400 ms after
bounce.

Figure 6. Dependence of the derived eigenfrequencies on the position of the
outer boundary in our analysis. This plot demonstrates that the frequencies of
p -modes are only approximately captured by our calculations. At the same
time, the frequencies of the f-mode and the low-order g -modes are almost
insensitive to the position of the outer boundary, which demonstrates the
robustness of our main result, i.e., the association between the dominant GW
feature and the fundamental ( f ) l=2 PNS mode.
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Table 1. PNS models discussed in this study. For each PNS model, we list the name of PNS model, the progenitor model, EOS, the
dimension of numerical simulation, the position in text where we discuss, and the reference for the linear analysis on each PNS model.

label progenitor model EOS dimension corresponding portion linear analysis

LS220-2D 2.9M⊙a LS220d 2Dh Sec. 3 this study
LS220-1D 1Dh Appendix B this study
SFHx-3D 15M⊙b SFHxe 3Di Sec. 3 Sotani et al. (2017, 2019)
TGTF-2D 20M⊙c TGTFf 2Dj Appendix A Sotani & Takiwaki (2020)
DD2-2D 20M⊙c DD2g 2Dj Appendix A Sotani & Takiwaki (2020)

aMoriya et al. (2019), bWoosley & Weaver (1995), cWoosley & Heger (2007).
dLattimer & Swesty (1991), eSteiner, Hempel, & Fischer (2013), fTogashi et al. (2017), gTypel et al. (2010).
hTakiwaki (2020a), iKuroda, Kotake, & Takiwaki (2016), jTakiwaki (2020b).
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Figure 2. Comparing the f -, pi-, and gi-mode frequencies for i = 1 up to 5 on the PNS models with ρs = 1011 g/cm3 to those with
ρs = 1010 g/cm3, where the open marks with dotted lines correspond to the results with ρs = 1011 g/cm3, while the filled marks with
dashed lines are the results with ρs = 1010 g/cm3.

3 GRAVITATIONAL WAVE SIGNALS FROM PNS

On the PNS models obtained via 2D simulation, we make a linear analysis. For this purpose, as in Sotani & Takiwaki (2016);

Sotani et al. (2019); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020), we simply adopt the relativistic Cowling approx-

imation in this study, where the metric perturbation is neglected during the fluid oscillations. In this case, the perturbation

equations can be derived by linearizing the energy-momentum conservation law. In addition, one has to impose appropriate

boundary conditions at the stellar center and the outer boundary, i.e., the PNS surface. The concrete perturbation equations

and the boundary conditions are the same as in Sotani et al. (2019). Then, the problem to solve becomes an eigenvalue

problem with respect to the eigenvalue, ω, with which the eigenfrequency, f , is determined via f = ω/(2π). As the standard

standard asteroseismology, the eigenmodes are identified by counting the nodal numbers in the eigenfunctions, i.e., the nodal

numbers of f -, pressure (pi-), and gi-modes are 0, i, and i, respectively. With respect to some of eigenmodes (especially pi-

and gi-modes with lower i and f -mode) in early phase after core bounce, the nodal numbers become more than their definition

because the additional nodes appear in the vicinity of the stellar center. Even in such a case, the nodal numbers for the pi-

and gi-modes with higher i, e.g., i>∼ 3, are the same as the definition. So, even for the eigenmodes whose nodal numbers are

more than their definition, we simply classify them as usual by using the pi- and gi-modes with higher i.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

c⃝ 0000 RAS, MNRAS 000, 000–000

dotted：1011	g/cm3	

dashed：1010	g/cm3	



pulsation	energy	density	

•  f-	&	g1-modes	are	not	
dominant	@PNS	surface	
à	f-	&	g1-modes	weakly		
			depend	on	ρs	
	

•  gi-modes	related	to	fBV	
•  g1-mode	is	strongly	
associated	with	BV	freq.	
@r=8km,	which	
decreases	with	time	
à	decrease	of	g1-mode	
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Figure 4. Radial-dependent pulsation energy density, E, is shown for the f - and pi-modes in the left panel and for the gi-modes in
the right panel, where the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. In the right
panel, for reference the Brunt-Väisälä frequency, fBV is also shown. The right endpoint of E corresponds to the PNS surface for the
corresponding time. We note that the g1-mode frequencies at 0.4, 0.6, and 0.8 sec after core bounce are respectively 825.0, 753.0, and
685.4 Hz.

of the PNS surface, where the peak at ∼ 8 km decreases and that in the vicinity of the PNS surface increases with time. The

decrease of fBV around 8 km may correspond to the decrease of the g1-mode frequency with time, i.e., the g1-mode frequencies

at ∼ 0.4, 0.6, and 0.8 sec are respectively 825.0, 753.0, and 685.4 Hz. In addition, we find that the shape of pulsation energy

density for g2 and g3-modes strongly depend on the fBV distribution. In particular, the pulsation energy of the g2-mode

becomes more dominant in the vicinity of the PNS surface with time due to the enhancement of fBV in the region around

the PNS surface. On the other hand, the pulsation energy of the g3-mode is still stronger in the core region of PNS. So, we

may say that the g1- and g3-modes correspond to the core g-mode, while the g2-mode is the surface g-mode.

Next, we consider to identify the ramp up signals of gravitational waves in numerical data. Using the numerical data

obtained via hydrodynamical simulations, as in Murphy, Ott, & Burrows (2009), the dimensionless characteristic gravitational

wave strain is given by

hchar(f, Tpb) =

√
2G

π2c3D2

dEGW

df
, (4)

where D denotes the source distance, while dEGW/df denotes the time-integrated energy spectra of gravitational wave calcu-

lated with a short-time Fourier transform, S̃(f, Tpb), via

dEGW

df
(f, Tpb) =

3G
5c2

(2πf)2 |S̃(f, Tpb)|, (5)

mentioned. That is, the region with A < 0 (or N 2 > 0) is a stable region. So, most of the PNS region is convectively unstable for the
models discussed in Sotani et al. (2019), which may be a reason why the gi-modes could not be found in Sotani et al. (2019).
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)

where N 2 is given by

N 2 = −e2Φ−2Λ Φ′

ε+ p

(
ε′ − p′

c2s

)
. (3)

In this equation, Φ and Λ are the metric function as gtt = −e2Φ and grr = e2Λ, p and cs denote the pressure and sound

velocity, and the prime denotes the partial derivative with respective to r. We remark that the region with N 2 > 0 (N 2 < 0)

is convectively stable (unstable) region 1. From this figure, one can see the peak in fBV appears at ∼ 8 km and in the vicinity

1 The statement about the stability mentioned in Sotani et al. (2019) is not correct, where the condition is opposite to what they
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Figure 3. Radial profile of the absolute value of the eigenfunction for the PNS model with ρs = 1011 g/cm3 obtained from 2D simulations,
where W (r) denotes the eigenfunction of the radial displacement. The left, middle, and right panels correspond to the PNS models at
Tpb = 0.25, 0.30, and 0.35 sec, respectively, where the solid, dashed, and dotted lines denote the eigenfunctions for the f -, g1- and
p1-modes.

First, in order to see how the time evolution of the eigenfrequencies of gravitational waves depends on the selection of

ρs, in Fig. 2 we show the frequency evolution for the PNS models with ρs = 1011 g/cm3 (open marks with dotted lines) and

with ρs = 1010 g/cm3 (filled marks with dashed lines), provided from the 2D simulation, where the circles, diamonds, and

squares denote the f -, pi-, and gi-modes for i = 1 up to 5. We remark that the frequencies increase (decrease) for pi-modes

(gi-modes) as i increases. From this figure, one can clearly observe a phenomenon of the avoided crossing in the time evolution

of eigenfrequencies, as in Morozova et al. (2018); Sotani & Sumiyoshi (2019); Sotani & Takiwaki (2020); Torres-Forné et al.

(2019a). That is, for example one can see such a phenomenon between the f - and g1-modes at Tpb ≃ 0.3 sec.

In order to see the phenomena around the avoided crossing, in Fig. 3 we show the radial profile of the absolute value of

the eigenfunctions (the Lagrangian displacement in the radial direction) for the f -, g1-, and p1-modes, where the left, middle,

and right panels correspond to the PNS models at ≃ 0.25, 0.30, and 0.35 sec. From this figure one can see that the amplitude

of g1-mode increases with time in the deeper region of the PNS, while the eigenfunction of the p1-mode is almost unchanged

during the avoided crossing between the f - and g1-modes. We remark that the shape of the f -mode at 0.25 sec is not as usual,

comparing to that for the cold neutron stars, i.e., the amplitude of the f -mode at 0.25 sec does not monotonically increase

from the center to the surface. The behavior of the f - and g1-modes seems to be consistent with the result shown in Fig. 5 in

Torres-Forné et al. (2019a). In addition, one can see that at least the eigenfunctions of the g1-mode becomes very similar to

that of the f -mode at the avoided crossing. We remark that the avoid crossing does not happen with the mode classification

newly defined in Torres-Forné et al. (2018, 2019a).

From Fig. 2, we also find that the eigenfrequencies strongly depend on the selection of ρs especially in the early phase

after core bounce, such as until Tpb ∼ 0.3 sec, while we also confirm that the f - and g1-modes are independent of ρs except

for the early phase. This result is more or less consistent with that shown in Morozova et al. (2018), which may come from

a behavior of the pulsation energy density, E, corresponding eigenfunctions. Here, the Newtonian radial-dependent energy

density is estimated as in Morozova et al. (2018); Sotani et al. (2019); Torres-Forné et al. (2018), i.e.,

E(r) ∼ ω2ε
r4

[
W 2 + ℓ(ℓ+ 1)r2V 2

]
, (1)

where ε, ω, and V are the energy density, the eigenvalue, and the Lagrangian displacement in the angular direction. As an

example, in Fig. 4 we show E(r) for the f - and pi-modes in the left panel and for the gi-modes in the right panel, where

the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. From this figure, one can

see that the f - and g1-modes strongly oscillate inside the PNS. On the other hand, the other modes strongly oscillate not

only inside the PNS but also the surface region of PNS. In addition, the position of node for these modes (except for the f -

and g1-modes) exist closer to the surface. This may be a reason why the f - and g1-modes are less sensitive to the position

of the PNS surface (or the selection of ρs). We should also mention the discrepancy between the current results and our

previous results in Sotani et al. (2019), where the frequencies strongly depend on the selection of ρs. This is because the PNS

models considered in Sotani et al. (2019) are quite unusual, where the standing accretion-shock instability (SASI) is so strong

that almost whole region inside the PNS is convectively blended. As a result, almost whole region inside the PNS becomes

convectively unstable, as shown in Fig. 3 in Sotani et al. (2019). On the other hand, with using the usual PNS models as in

this study, we can show that the f - and g1-mode frequencies depend weakly on the selection of ρs.

Moreover, in the right panel of Fig. 4, we also show the Brunt-Väisälä frequency, fBV, for reference. We remark that fBV

is determined via only the background (unperturbed) properties as

fBV = sgn(N 2)
√

|N 2|/2π, (2)
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Figure 4. Radial-dependent pulsation energy density, E, is shown for the f - and pi-modes in the left panel and for the gi-modes in
the right panel, where the top, middle, and bottom panels correspond to the PNS models at Tpb ≃ 0.4, 0.6, and 0.8 sec. In the right
panel, for reference the Brunt-Väisälä frequency, fBV is also shown. The right endpoint of E corresponds to the PNS surface for the
corresponding time. We note that the g1-mode frequencies at 0.4, 0.6, and 0.8 sec after core bounce are respectively 825.0, 753.0, and
685.4 Hz.

where N 2 is given by

N 2 = −e2Φ−2Λ Φ′

ε+ p

(
ε′ − p′

c2s

)
. (3)

In this equation, Φ and Λ are the metric function as gtt = −e2Φ and grr = e2Λ, p and cs denote the pressure and sound

velocity, and the prime denotes the partial derivative with respective to r. We remark that the region with N 2 > 0 (N 2 < 0)

is convectively stable (unstable) region 2. From this figure, one can see the peak in fBV appears at ∼ 8 km and in the vicinity

of the PNS surface, where the peak at ∼ 8 km decreases and that in the vicinity of the PNS surface increases with time. The

decrease of fBV around 8 km may correspond to the decrease of the g1-mode frequency with time, i.e., the g1-mode frequencies

at ∼ 0.4, 0.6, and 0.8 sec are respectively 825.0, 753.0, and 685.4 Hz. In addition, we find that the shape of pulsation energy

density for g2 and g3-modes strongly depend on the fBV distribution. In particular, the pulsation energy of the g2-mode

becomes more dominant in the vicinity of the PNS surface with time due to the enhancement of fBV in the region around

the PNS surface. On the other hand, the pulsation energy of the g3-mode is still stronger in the core region of PNS. So, we

may say that the g1- and g3-modes correspond to the core g-mode, while the g2-mode is the surface g-mode.

2 The statement about the stability mentioned in Sotani et al. (2019) is not correct, where the condition is opposite to what they
mentioned. That is, the region with A < 0 (or N 2 > 0) is a stable region. So, most of the PNS region is convectively unstable for the
models discussed in Sotani et al. (2019), which may be a reason why the gi-modes could not be found in Sotani et al. (2019). On the
other hand, since the region, where the Brunt-Väisälä frequency becomes negative, i.e., convectively unstable, is very limited in this
study, the g-mode oscillations are stably excited. Thus, whether or not the g-mode oscillations can be excited strongly depends on the
strength of convection and the width of the convectively unstable region.
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in	numerical	simulation		

•  GW	signals	correspond	to	g1-mode	in	early	phase	and	f-mode	after	
avoided	crossing.	
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Figure 5. Comparison between the gravitational wave signals obtained from the numerical simulation (background contour) and several
eigenfrequencies for the PNS with ρs = 1011 g/cm3, where circles, diamonds, and squares denote the f -, pi-, and gi-modes for i = 1 or
2. The source distance is assumed to be D = 10 kpc.

S̃(f, Tpb) =
1
2

∫ Tpb+∆t

Tpb−∆t

d2I−zz

dt2

[
1 + cos

(
π(t− Tpb)

2∆t

)]
exp(−2πift)dt, (6)

where 2∆t denotes the width of the window function and I−zz is the zz-component of the reduced mass-quadrupole tensor I−jk

given by Eq. (11) in Murphy, Ott, & Burrows (2009). In Fig. 5, we show the resultant value of hchar with contour, adopting

that D = 10 kpc and ∆t = 20 ms. In this figure, one can clearly observe the ramp up signals from ∼ 500 hertz up to ∼ 1.5

kilohertz in the time interval of Tpb ≃ 0.15− 0.65 sec. On this figure, we also plot the several eigenfrequencies on PNS model

with ρs = 1011 g/cm3. From this figure, it is obviously found that the ramp up signals correspond well to the g1-mode in

the early phase and to the f -mode after the avoided crossing. But, since the g1-mode frequency depends on ρs in the early

phase as mentioned before, it is not sure whether or not the ramp up signal corresponds well to the g1-mode for different PNS

models provided with the different numerical simulations. In order to check this point, we calculate the gravitational wave

signals from the 2D numerical simulations with completely different progenitor models and EOSs as in Table 1 and compare

it with the eigenmodes calculated for the corresponding PNS with ρs = 1011 g/cm3. Then, we find that the ramp up signals

still seem to be good agreement with the g1-mode on the PNS model with 1011 g/cm3 as shown in Fig. A1 (see the details in

Appendix A).

Now, it is observationally important what one can learn from the direct observation of the gravitational wave signals after

supernova explosion, assuming that principal signals are the ramp up signals appearing in numerical simulations. That is,

since the ramp up signals partially correspond to the f - and g1-mode frequencies, it is very useful if one could connect these

frequencies to the PNS properties. In the left panel of Fig. 6, we show the f - and g1-mode frequencies for the PNS model with

ρs = 1011 g/cm3 as a function of the square root of the normalized PNS average density, (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2.

With this data, we successfully find that the f - and g1-mode frequencies, which correspond to the ramp up signals, are well

expressed as

f(kHz) = −3.250− 0.978 ln(x) + 15.984x− 15.051x2, (7)

where x is the square root of the normalized PNS average density, i.e., x = (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2. In practice,

the frequency predicted from Eq. (7) is also plotted with the thick-solid line in the left panel of Fig. 6. Thus, using Eq. (7), one

could get the evolution of the PNS average density via the observed frequency of gravitational wave after supernova explosion.

In this study, since we consider only one progenitor model and one EOS, it is difficult to say how this relation is independent

of the models. Even so, this relation seems to be independent of the models at least in the early phase, as shown in Fig. A2

in Appendix A. Anyway, additional models should be considered in the future.

The relation similar to Eq. (7) has already been proposed, as a function of x in Sotani & Sumiyoshi (2019);

f(kHz) = 0.9733− 2.7171x+ 13.7809x2, (8)

and as a function of x̄ ≡ MPNS/R
2
PNS in the unit of M⊙/km

2 in Torres-Forné et al. (2019b);

f(kHz) = 12.4× 102x̄− 378× 103x̄2 + 4.24× 107x̄3, (9)

although in Torres-Forné et al. (2019b) the ramp up signal is identified as g2-mode in their classification. Eq. (8) are derived

for the f -mode frequency after the avoided crossing with the g1-mode with the PNS models provided by the 1D numerical

simulations, which are eventually collapsed into black hole. In the left panel of Fig. 6, we also plot the thick-dotted line
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ABSTRACT
We present 3D simulations of the core-collapse of massive rotating and non-rotating
progenitors performed with the general relativistic neutrino hydrodynamics code COCONUT-
FMT. The progenitor models include Wolf-Rayet stars with initial helium star masses of 39 M⊙
and 20 M⊙, and an 18 M⊙ red supergiant. The 39 M⊙ model is a rapid rotator, whereas the two
other progenitors are non-rotating. Both Wolf-Rayet models produce healthy neutrino-driven
explosions, whereas the red supergiant model fails to explode. By the end of the simulations,
the explosion energies have already reached 1.1 × 1051 and 0.6 × 1051 erg for the 39 M⊙ and
20 M⊙ model, respectively. They produce neutron stars of relatively high mass, but with modest
kicks. Due to the alignment of the bipolar explosion geometry with the rotation axis, there is
a relatively small misalignment of 30◦ between the spin and the kick in the rapidly rotating
39 M⊙ model. For this model, we find that rotation significantly changes the dependence of the
characteristic gravitational-wave frequency of the f-mode on the proto-neutron star parameters
compared to the non-rotating case. Its gravitational-wave amplitudes would make it detectable
out to almost 2 Mpc by the Einstein Telescope. The other two progenitors have considerably
smaller detection distances, despite significant low-frequency emission in the most sensitive
frequency band of current gravitational-wave detectors.

Key words: gravitational waves – hydrodynamics.

1 IN T RO D U C T I O N

Multidimensional simulations of core-collapse supernovae (CC-
SNe) have advanced rapidly in recent years (See Janka, Melson &
Summa 2016; Müller 2016 for recent reviews), with many simula-
tions focusing on 3D, non-rotating, neutrino-driven explosions. The
neutrino-driven explosion mechanism involves some re-absorption
of the emitted neutrinos behind the stalled shock, which revive the
shock wave and power the explosion (Janka 2012; Burrows 2013).
Successful neutrino-driven shock revival has now been observed in
multiple 3D simulations employing different codes and a range of
progenitor parameters (e.g. Takiwaki, Kotake & Suwa 2014; Lentz
et al. 2015; Melson et al. 2015; Müller et al. 2017, 2019; Ott et al.
2018; Burrows, Radice & Vartanyan 2019; Powell & Müller 2019;
Walk et al. 2019; Burrows et al. 2020).

The frequency range of the gravitational waves emitted in
neutrino-driven explosions makes CCSNe a promising source for
current ground-based gravitational-wave detectors, such as Ad-
vanced LIGO (aLIGO; The LIGO Scientific Collaboration 2015)
and Advanced Virgo (AdVirgo; Acernese & et al. 2015), and

⋆ E-mail: dr.jade.powell@gmail.com

planned future detectors like the Einstein Telescope (ET; Punturo
et al. 2010). Recent 3D simulations of neutrino-driven CCSNe have
shown that the dominant feature of the gravitational-wave emission
is due to the quadrupolar surface g-mode of the proto-neutron
star (PNS), which is excited by the hydrodynamical instabilities
inside and outside the PNS (Murphy, Ott & Burrows 2009; Cerdá-
Durán et al. 2013; Müller, Janka & Marek 2013; Kuroda, Kotake
& Takiwaki 2016; Andresen et al. 2017). At lower frequencies
(below ∼ 200 Hz), there may be further features associated with the
standing accretion shock instability (SASI) (Blondin, Mezzacappa
& DeMarino 2003; Blondin & Mezzacappa 2006; Foglizzo et al.
2007).

The majority of successful 3D neutrino-driven CCSN simulations
are explosions of non-rotating progenitor models with zero-age
main sequence (ZAMS) masses in the range of 10 M⊙ to 30 M⊙.
To fully cover the CCSN parameter space, further 3D simulations
of higher mass stars are required. Whether and when such massive
stars directly form black holes, or explode and leave massive neutron
stars, or a black hole due to fallback, is an open question. Simulating
CCSNe with larger progenitor masses will also enable us to further
study the relationship between compactness and explodability found
in previous studies (O’Connor & Ott 2011). Intriguingly and in
contrast to O’Connor & Ott (2011), a number of 3D neutrino-
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FMT. The progenitor models include Wolf-Rayet stars with initial helium star masses of 39 M⊙
and 20 M⊙, and an 18 M⊙ red supergiant. The 39 M⊙ model is a rapid rotator, whereas the two
other progenitors are non-rotating. Both Wolf-Rayet models produce healthy neutrino-driven
explosions, whereas the red supergiant model fails to explode. By the end of the simulations,
the explosion energies have already reached 1.1 × 1051 and 0.6 × 1051 erg for the 39 M⊙ and
20 M⊙ model, respectively. They produce neutron stars of relatively high mass, but with modest
kicks. Due to the alignment of the bipolar explosion geometry with the rotation axis, there is
a relatively small misalignment of 30◦ between the spin and the kick in the rapidly rotating
39 M⊙ model. For this model, we find that rotation significantly changes the dependence of the
characteristic gravitational-wave frequency of the f-mode on the proto-neutron star parameters
compared to the non-rotating case. Its gravitational-wave amplitudes would make it detectable
out to almost 2 Mpc by the Einstein Telescope. The other two progenitors have considerably
smaller detection distances, despite significant low-frequency emission in the most sensitive
frequency band of current gravitational-wave detectors.

Key words: gravitational waves – hydrodynamics.

1 IN T RO D U C T I O N

Multidimensional simulations of core-collapse supernovae (CC-
SNe) have advanced rapidly in recent years (See Janka, Melson &
Summa 2016; Müller 2016 for recent reviews), with many simula-
tions focusing on 3D, non-rotating, neutrino-driven explosions. The
neutrino-driven explosion mechanism involves some re-absorption
of the emitted neutrinos behind the stalled shock, which revive the
shock wave and power the explosion (Janka 2012; Burrows 2013).
Successful neutrino-driven shock revival has now been observed in
multiple 3D simulations employing different codes and a range of
progenitor parameters (e.g. Takiwaki, Kotake & Suwa 2014; Lentz
et al. 2015; Melson et al. 2015; Müller et al. 2017, 2019; Ott et al.
2018; Burrows, Radice & Vartanyan 2019; Powell & Müller 2019;
Walk et al. 2019; Burrows et al. 2020).

The frequency range of the gravitational waves emitted in
neutrino-driven explosions makes CCSNe a promising source for
current ground-based gravitational-wave detectors, such as Ad-
vanced LIGO (aLIGO; The LIGO Scientific Collaboration 2015)
and Advanced Virgo (AdVirgo; Acernese & et al. 2015), and

⋆ E-mail: dr.jade.powell@gmail.com

planned future detectors like the Einstein Telescope (ET; Punturo
et al. 2010). Recent 3D simulations of neutrino-driven CCSNe have
shown that the dominant feature of the gravitational-wave emission
is due to the quadrupolar surface g-mode of the proto-neutron
star (PNS), which is excited by the hydrodynamical instabilities
inside and outside the PNS (Murphy, Ott & Burrows 2009; Cerdá-
Durán et al. 2013; Müller, Janka & Marek 2013; Kuroda, Kotake
& Takiwaki 2016; Andresen et al. 2017). At lower frequencies
(below ∼ 200 Hz), there may be further features associated with the
standing accretion shock instability (SASI) (Blondin, Mezzacappa
& DeMarino 2003; Blondin & Mezzacappa 2006; Foglizzo et al.
2007).

The majority of successful 3D neutrino-driven CCSN simulations
are explosions of non-rotating progenitor models with zero-age
main sequence (ZAMS) masses in the range of 10 M⊙ to 30 M⊙.
To fully cover the CCSN parameter space, further 3D simulations
of higher mass stars are required. Whether and when such massive
stars directly form black holes, or explode and leave massive neutron
stars, or a black hole due to fallback, is an open question. Simulating
CCSNe with larger progenitor masses will also enable us to further
study the relationship between compactness and explodability found
in previous studies (O’Connor & Ott 2011). Intriguingly and in
contrast to O’Connor & Ott (2011), a number of 3D neutrino-

C⃝ 2020 The Author(s)
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•  less	than	~20%	accuracy			
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2020/12/18	KIW7@Taipei	&	zoom	

gi-modes for i ≥ 3 appear on the left side of the g2-mode
(and are more than 0) in this figure, although we do not
consider in this study. In this study, we adopt the standard
mode classification, i.e., the f-mode has no node in the
eigenfunction, while the pi- and gi-modes have i nodes in
the corresponding eigenfunction. We remark that the
QNMs associated with the oscillations of spacetime itself,
i.e., the so-called w-modes, which are almost independent
of the fluid oscillations, exist in the relativistic framework,
in addition to the fluid modes considered in this study, such
as the f-, pi-, and gi-modes. Unlike the fluid modes, the
damping rate of w-mode is comparable to the oscillation
frequency. Anyway, since the w-mode damping rate is
comparable to its frequency [38,43], the extraction of the
w-modes from the gravitational wave signal may be more
difficult.
On the other hand, the perturbation equations with the

Cowling approximation are derived by linearizing the
energy-momentum conservation law. The concrete equa-
tions and the boundary conditions imposed at the stellar
center and at the PNS surface are completely the same as in
Ref. [20]. With the same PNS models considered in this
study, the gravitational wave frequencies with Cowling
approximation have already been determined in Ref. [21].
In Fig. 2, we show the time evolution of the frequency for
several QNMs calculated without and with the Cowling
approximation, where the filledmarkswith dashed lines (the
open marks with dotted lines) are the results without (with)
the Cowling approximation. From this figure, one can
observe that the behavior of the frequencies obtained with
the Cowling approximation is qualitatively the same way as
in that without the Cowling approximation. In practice, the
phenomena of avoided crossing can be seen in both of the
time evolutions with and without the Cowling approxima-
tion, i.e., between the f- and p1-modes at Tpb ≃ 0.2 sec and
between the f- and g1-modes at Tpb ≃ 0.35 sec.

In order to clearly see the accuracy of the Cowling
approximation, we calculate the relative deviation between
the frequencies obtained with and without the Cowling
approximation as

Δ≡ ffull − fCowling
ffull

; ð1Þ

where ffull and fCowling denote the frequencies determined
without and with the Cowling approximation, respectively.
In Fig. 3, we show the value of Δ as a function of Tpb,
where the circle, filled-diamond, open-diamond, filled-
square, and open-square correspond to the results for the
f-, p1-, p2-, g1-, and g2-modes, respectively. From this
figure, we find that the frequencies with the Cowling
approximation can totally be determined within ∼20%
accuracy. In particular, the pi-modes except for p2-mode at
Tpb ¼ 0.1 sec are within ∼7% accuracy, the gi-modes are
determined within ∼13% accuracy, while the f-mode in
early phase (Tpb ≲ 0.4 sec) are determined within ∼5%
accuracy. We also find that the f- and pi-modes (gi-modes)
frequencies are basically overestimated (underestimated)
with the Cowling approximation. Furthermore, in Fig. 3
one can observe that the deviation in the f-mode frequency
increases with time. Unfortunately, we cannot identify the
reason of this result, but at least this result may be
independent from the increase of the PNS compactness,
MPNS=RPNS, because the accuracy of the Cowling approxi-
mation for cold neutron stars becomes better as the stellar
compactness increases [47].
Now, we try to compare our results with that in the

previous studies [19,23], where some terms of the metric
perturbations are taken into account. In Ref. [19], only the
perturbation of the lapse function (δα) is taken into account,
and the f-mode frequency becomes higher than that with
the Cowling approximation. On the other hand, in
Ref. [23], the perturbations of the lapse function and
conformal factor (δψ) are taken into account, and the
resultant frequency becomes lower than that with the

FIG. 2. Time evolution of the gravitational wave frequency for
the f-, p1-, p2-, g1-, and g2-modes. The filled marks with dashed
lines correspond to the results obtained without the Cowling
approximation (full perturbations) in this study, while the open
marks with dotted lines correspond those with the Cowling
approximation in Ref. [21].

FIG. 3. Relative deviation of the frequency with the Cowling
approximation from that without the Cowling approximation,
calculated with Eq. (1).
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Figure 6. In the left panel, frequencies of the f - and g1-modes are shown as a function of the root square of the PNS average density,
where the thick-solid and thick-dotted lines are the fitting formula given by Eqs. (7) and (8). In the right panel, frequencies of the f -
and g1-modes are shown as a function of the surface gravity of the PNS, where the thick-solid line denote the fitting formula given by
Eq. (9).
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Figure 7. Characteristic gravitational wave frequencies extracted by the time-frequency analysis (Kawahara et al. 2018) from the general
relativistic 3D numerical simulation with SFHx (Kuroda, Kotake, & Takiwaki 2016) in the left panel. The characteristic gravitational
frequencies speculated with the avoided crossing, using the result shown in the left panel, in the right panel.

given by Eq. (8). From this figure, we find that the f -mode frequency is well identified by Eq. (8) up to f ≃ 1.4 kHz, which

corresponds to Tpb
<∼ 0.6 sec from Fig. 5 (or Fig. 2), but it deviates for Tpb

>∼ 0.6 sec. This may come from that the PNS

models for deriving Eq. (8) become more compact in the later phase due to the massive progenitor model. On the other hand,

in order to see the correspondence between the eigenmodes calculated in this study and Eq. (9), we show the f - and g1-mode

frequencies as a function of x̄ in the right panel of Fig. 6. This fitting formula seems to correspond to the f -mode rather than

the g1-mode in the very early phase and also in the late phase, at least for comparing to our results.

Finally, we make a comment with respect to the previous results about the gravitational wave signals, especially obtained

via the general relativistic 3D simulation (Kuroda, Kotake, & Takiwaki 2016), which is done with a 15M⊙ progenitor model

(Woosley & Weaver 1995) and SFHx EOS (Steiner, Hempel, & Fischer 2013). Unlike most of the other simulation results,

several modes of gravitational wave signals have been found in this simulation. The characteristic gravitational wave frequencies

extracted by the time-frequency analysis (Kawahara et al. 2018) are shown in the left panel of Fig. 7, where the signal A

corresponds to the ramp up signals. Nevertheless, considering the results with the PNS asteroseismology shown in Fig. 2, the

mode crossing between the signal A and C-C# should be avoided, i.e., the gravitational wave signals may theoretically become

as in the right panel of Fig. 7. If so, the signals A0-C# and C-A may correspond to the g1- and f -modes, respectively, comparing

to the result shown in Fig. 2. In addition, the signal C may come from the p2-, p1-, and f -modes, which are exchanged through

the avoided crossing, although the corresponding avoided crossing can not be seen obviously in the simulation data. On the

other hand, the signals D and B, which are considered as a results of the SASI, may correspond to some of gi-modes, e.g., the

signal D may correspond to the g2-mode. The correspondence mentioned here is just a speculation, but it would be confirmed

in the future via more complicated analysis, e.g., with which one can distinguish the left and right panels in Fig. 7.
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Figure 5. Comparison between the gravitational wave signals obtained from the numerical simulation (background contour) and several
eigenfrequencies for the PNS with ρs = 1011 g/cm3, where circles, diamonds, and squares denote the f -, pi-, and gi-modes for i = 1 or
2. The source distance is assumed to be D = 10 kpc.

S̃(f, Tpb) =
1
2

∫ Tpb+∆t

Tpb−∆t

d2I−zz

dt2

[
1 + cos

(
π(t− Tpb)

2∆t

)]
exp(−2πift)dt, (6)

where 2∆t denotes the width of the window function and I−zz is the zz-component of the reduced mass-quadrupole tensor I−jk

given by Eq. (11) in Murphy, Ott, & Burrows (2009). In Fig. 5, we show the resultant value of hchar with contour, adopting

that D = 10 kpc and ∆t = 20 ms. In this figure, one can clearly observe the ramp up signals from ∼ 500 hertz up to ∼ 1.5

kilohertz in the time interval of Tpb ≃ 0.15− 0.65 sec. On this figure, we also plot the several eigenfrequencies on PNS model

with ρs = 1011 g/cm3. From this figure, it is obviously found that the ramp up signals correspond well to the g1-mode in

the early phase and to the f -mode after the avoided crossing. But, since the g1-mode frequency depends on ρs in the early

phase as mentioned before, it is not sure whether or not the ramp up signal corresponds well to the g1-mode for different PNS

models provided with the different numerical simulations. In order to check this point, we calculate the gravitational wave

signals from the 2D numerical simulations with completely different progenitor models and EOSs as in Table 1 and compare

it with the eigenmodes calculated for the corresponding PNS with ρs = 1011 g/cm3. Then, we find that the ramp up signals

still seem to be good agreement with the g1-mode on the PNS model with 1011 g/cm3 as shown in Fig. A1 (see the details in

Appendix A).

Now, it is observationally important what one can learn from the direct observation of the gravitational wave signals after

supernova explosion, assuming that principal signals are the ramp up signals appearing in numerical simulations. That is,

since the ramp up signals partially correspond to the f - and g1-mode frequencies, it is very useful if one could connect these

frequencies to the PNS properties. In the left panel of Fig. 6, we show the f - and g1-mode frequencies for the PNS model with

ρs = 1011 g/cm3 as a function of the square root of the normalized PNS average density, (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2.

With this data, we successfully find that the f - and g1-mode frequencies, which correspond to the ramp up signals, are well

expressed as

f(kHz) = −3.250− 0.978 ln(x) + 15.984x− 15.051x2, (7)

where x is the square root of the normalized PNS average density, i.e., x = (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2. In practice,

the frequency predicted from Eq. (7) is also plotted with the thick-solid line in the left panel of Fig. 6. Thus, using Eq. (7), one

could get the evolution of the PNS average density via the observed frequency of gravitational wave after supernova explosion.

In this study, since we consider only one progenitor model and one EOS, it is difficult to say how this relation is independent

of the models. Even so, this relation seems to be independent of the models at least in the early phase, as shown in Fig. A2

in Appendix A. Anyway, additional models should be considered in the future.

The relation similar to Eq. (7) has already been proposed, as a function of x in Sotani & Sumiyoshi (2019);

f(kHz) = 0.9733− 2.7171x+ 13.7809x2, (8)

and as a function of x̄ ≡ MPNS/R
2
PNS in the unit of M⊙/km

2 in Torres-Forné et al. (2019b);

f(kHz) = 12.4× 102x̄− 378× 103x̄2 + 4.24× 107x̄3, (9)

although in Torres-Forné et al. (2019b) the ramp up signal is identified as g2-mode in their classification. Eq. (8) are derived

for the f -mode frequency after the avoided crossing with the g1-mode with the PNS models provided by the 1D numerical

simulations, which are eventually collapsed into black hole. In the left panel of Fig. 6, we also plot the thick-dotted line
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still seem to be good agreement with the g1-mode on the PNS model with 1011 g/cm3 as shown in Fig. A1 (see the details in

Appendix A).

Now, it is observationally important what one can learn from the direct observation of the gravitational wave signals after

supernova explosion, assuming that principal signals are the ramp up signals appearing in numerical simulations. That is,

since the ramp up signals partially correspond to the f - and g1-mode frequencies, it is very useful if one could connect these

frequencies to the PNS properties. In the left panel of Fig. 6, we show the f - and g1-mode frequencies for the PNS model with

ρs = 1011 g/cm3 as a function of the square root of the normalized PNS average density, (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2.

With this data, we successfully find that the f - and g1-mode frequencies, which correspond to the ramp up signals, are well

expressed as

f(kHz) = −3.250− 0.978 ln(x) + 15.984x− 15.051x2, (7)

where x is the square root of the normalized PNS average density, i.e., x = (MPNS/1.4M⊙)
1/2(RPNS/10km)−3/2. In practice,

the frequency predicted from Eq. (7) is also plotted with the thick-solid line in the left panel of Fig. 6. Thus, using Eq. (7), one

could get the evolution of the PNS average density via the observed frequency of gravitational wave after supernova explosion.

In this study, since we consider only one progenitor model and one EOS, it is difficult to say how this relation is independent

of the models. Even so, this relation seems to be independent of the models at least in the early phase, as shown in Fig. A2

in Appendix A. Anyway, additional models should be considered in the future.

The relation similar to Eq. (7) has already been proposed, as a function of x in Sotani & Sumiyoshi (2019);

f(kHz) = 0.9733− 2.7171x+ 13.7809x2, (8)

and as a function of x̄ ≡ MPNS/R
2
PNS in the unit of M⊙/km

2 in Torres-Forné et al. (2019b);

f(kHz) = 12.4× 102x̄− 378× 103x̄2 + 4.24× 107x̄3, (9)

although in Torres-Forné et al. (2019b) the ramp up signal is identified as g2-mode in their classification. Eq. (8) are derived

for the f -mode frequency after the avoided crossing with the g1-mode with the PNS models provided by the 1D numerical

simulations, which are eventually collapsed into black hole. In the left panel of Fig. 6, we also plot the thick-dotted line
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2. The source distance is assumed to be D = 10 kpc.

S̃(f, Tpb) =
1
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dt2
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)]
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universality	
•  at	least,	g1-modes	seem	to	be	well	expressed	independently	of	EOS	and	

progenitor	models.	
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or 2, respectively, and the left and right panels correspond to the results for TGTF and DD2. The contour denotes the dimensionless
gravitational wave strain calculated via Eq. (4), where the source distance is assumed to be D = 10 kpc.
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In Fig. B1, we show the time evolution of the f -, p1-, and g1-mode frequencies for the PNS models obtained from 1D (filled

marks) and 2D simulations (open marks). As pointed out in Sotani & Takiwaki (2020), the time evolution itself depends on

the dimensionality of the numerical simulations. On the other hand, as shown in the left panel of Fig. B2, the f - and pi-modes

weakly depend on the dimensionality as a function of the root square of the stellar average density. Moreover, as pointed out

in Sotani & Takiwaki (2020), one can see from the middle and right panels of Fig. B2 that at least in the early phase after

core bounce the ratio of the p1-mode to the f -mode is almost independent of the dimensionality as a function of the root

square of the average density, while the ratio of the g1-mode to the f -mode is almost independent of the dimensionality as a

function of the compactness. Even so, one can also see a deviation in such a ratio of eigenmodes after the avoided crossing

between the f - and the g1-modes, where the ratio of the g1-mode to the f -mode becomes maximum. This deviation may come

from the qualitative difference of the PNS mass evolution, depending on the dimensionality of numerical simulation as shown

in Fig. 1.
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case	for	BH	formation	
(Sotani	&	Sumiyoshi	19)	

•  Time	evolution	of	f-mode	GW		
strongly	depends	on	the		
progenitor	models.	

•  In	any	case,	it	can	be	well	fitted		
as	a	function	of	Tpb,	such	as	

–  one	can	expect	high	fre.	f-mode	GW,			
even	though	it	is	not	detected	directly.		
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FIG. 6: Comparison between ff obtained by eigenvalue problems (marks) and the expectation with the fitting formula given by Eq. (4)
(solid-thick lines). The left and right panels correspond to the cases for the PNS models with W40 and T50, respectively.

Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.
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FIG. 4: Evolution of the eigenfrequencies for the PNS model of W40-Shen. The right panel is just an enlarged view of the left panel. The f -,
pi-, and gi-modes are shown with the diamonds, squares, and circles.

III. PROTONEUTRON STAR ASTEROSEISMOLOGY

We perform the linear perturbation analysis of the PNS models described above. Once the PNS models are given, how to
determine the eigenfrequencies of PNS is the same as in Ref. [21]. That is, for simplicity, we assume the relativistic Cowling
approximation, i.e., the metric perturbations are neglected during the fluid oscillations. In this case, the perturbation equations
can be derived by linearizing the energy momentum conservation law. The concrete equation system is given by Eqs. (23) and
(24) in Ref. [21]. By imposing appropriate boundary conditions, it eventually becomes an eigenvalue problem with respect to
the eigenvalue of ω. Then, the eigenfrequency of gravitational wave is determined by ω/(2π). As the boundary conditions, one
has to impose the regularity condition at the stellar center, while the Lagrangian perturbation of pressure should be zero at the
PNS surface.

First, we show the evolution of eigenfrequencies for the PNS model of W40-Shen in Fig. 4, where the right panel is just an
enlarged view of the left panel. The diamonds, squares, and circles correspond to the frequencies of the f -, pi-, and gi-mode
gravitational waves. One can clearly observe the phenomena of the avoided crossing. That is, for example, focusing on the
f -mode frequency, the avoided crossing occurs with p1-mode at Tpb ∼ 200 ms and with g1-mode at Tpb ∼ (300 − 350) ms.
Due to the avoided crossing, one can observe the plateau for a while in the evolution of the f -mode frequency. The evolutions
of eigenfrequencies for the other PNS models are shown in Appendix A.

Next, we focus on the behavior of the f -mode frequency. In Fig. 5, the evolution of f -mode frequency is shown for various
PNS models. It is interesting to commonly observe the plateau for a while around Tpb ∼ (200 − 300) ms. As a general trend
except for the small plateau, we find that the f -mode frequency can be fitted well as

ff (kHz) = c0 + c1

(
Tpb

1000ms

)
+ c2

(
Tpb

1000ms

)2

, (4)

where c0, c1, and c2 are fitting coefficients depending on the PNS models, as shown in Table II. In Fig. 6, the fitted line for each
PNS model is shown with the thick-solid line. By using this fitting formula together with the information about TBH determined
from the neutrino observations, one could estimate the f -mode frequency from the PNS model with the maximum mass (at



Universality	in	f-mode	GWs	
•  The	f-mode	frequencies	are	

well-expressed	as	a	function	
of	stellar	average	density,	
independently	of	progenitor	
models.	

•  Through	 the	 f-mode	 GW,	 one	 can	 extract	 the	 PNS	 average	 density,	 which	
leads	to	the	time	evolution	of	PNS	average	density.	
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density for each time step. The solid-thick line denotes the fitting formula given by Eq. (5), using the data for PNSs with the square root of the
average density larger than 0.1.

of the f -mode gravitational waves. That is, using the observed frequency of f -mode gravitational wave, ff (Tpb), the square
root of the PNS average density, X(Tpb), is determined by

X(Tpb) = 9.8582× 10−2 ×
[
1 +

{
1− 7.2673×

(
1− ff (Tpb)

0.9733

)}1/2
]
, (6)

where ff is in the unit of kHz. We stress that the evolution of f -mode frequency for accreting PNSs is different from that for
ordinary non-accreting PNSs. It is possible to explore higher average density for the black hole forming case and the f -mode
frequency evolves beyond the linear relation, which was used in the ordinary PNSs.

Furthermore, as an advantage for considering the black hole formation, we can discuss the PNS model with the maximum
mass allowed by the adopted EOS. As mentioned above, the moment when the PNS would collapse to a black hole can be
determined via the neutrino observation. The PNS models at this moment should correspond to that with the maximum mass
allowed by the adopted EOS. We remark that the maximum mass of the PNS is different from that for the cold neutron star even
with the same nuclear EOS, due to the effects of the entropy and lepton distributions including neutrinos. As shown in Table I
and Fig. 6, TBH and the evolution of f -mode gravitational waves depend on the progenitor models of PNSs and the EOS. Even
so, the observed f -mode gravitational wave can be generally fitted as Eq. (4). Hence, via Eq. (4) with the help of the neutrino
observation, one can estimate the frequency of the f -mode gravitational waves from the last moment of the PNS re-collapse to
a black hole. With the resultant f -mode frequency (or the observed f -mode frequency if the f -mode gravitational wave would
be directly observed), the average density of the PNS with the maximum mass can be estimated via Eq. (6).

Now, we check how one can determine the square root of the average density of the PNS with the maximum mass in the
scheme suggested above by using the specific PNS models considered in this study. For this purpose, we compare the square
root of the average density for PNS with the maximum mass estimated with the fitting formula (4) and the neutrino observation,
Xest, with the corresponding value, Xsim, which is known from the simulation in advance. The result is shown in Table III for
various PNS models, where the relative error determined by (Xsim −Xest)/Xsim is also shown. From this Table, we can find
that the relative error in the square root of the average density for the PNS model with the maximum mass becomes at least
less than 10% independently of the progenitor models. In fact, even though the f -mode frequency for the progenitor model of
T50-Shen deviates relatively from the fitting formula given by Eq. (5) as shown in Fig. 7, one can estimate the square root of the
average density for the PNS model with the maximum mass within less than 10% accuracy even for the model of T50-Shen.

In contrast to the f -mode frequency, one can see the complex behavior in the gi-mode frequency. It comes from the avoided
crossing with the f - and g2-modes for i = 1 and with the gi±1-modes for i > 1. For example, as shown in Fig. 4, the avoided
crossing in the g1-mode frequency for the PNS model with W40-Shen happens at Tpb ∼ (300 − 350) ms with f -mode and at
Tpb ∼ 150 and ∼ 1100 ms with g2-mode. For various progenitor models, we show the evolution of the g1-mode gravitational
waves in the left panel of Fig. 8, from which one can observe that the time evolution of the g1-mode gravitational waves strongly
depends on the progenitor models. In particular, it seems that the time when the avoided crossing happens between the g1- and
g2-mode gravitational waves strongly depends on the progenitor models.

Nevertheless, we find the universal behavior, which is insensitive to the progenitor models, in the ratio of the g1-mode fre-
quency to the f -mode frequency, fg1/ff , as shown in the right panel of Fig. 8. That is, fg1/ff can be characterized well by
the PNS compactness independently of the progenitor models, although the progenitor dependence of fg1/ff remains in the
final phase just before the PNS would collapse to a black hole [65]. Owing to this feature, one can derive the PNS compactness
at each time step via the observation of the f - and g1-mode gravitational waves. On the other hand, from the observation of
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(solid-thick lines). The left and right panels correspond to the cases for the PNS models with W40 and T50, respectively.

Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.
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For	PNS	with	maximum	mass	
•  PNS	at	the	moment	when	it	collapses	to	BH,	corresponds	to	the	PNS	

model	with	maximum	mass.	

•  How	to	determine	the	PNS	property	
①  With	the	data	of	the	f-mode	GW,	one	can		

fit	the	time	evolution	of	the	f-mode	GW		
②  Owning	to	the	neutrino	observation,	one	can	

know	the	moment	when	PNS	collapses	to	BH	
③  The	f-mode	frequency	is	expected	via	①	and	②	

④  Via	the	universal	relation	of	the	f-mode,		
one	can	extract	the	average	density	of		
PNS	with	maximum	mass	
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one can know via neutrino observation
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FIG. 7: Frequencies of the f -mode gravitational waves from various PNS models are shown as a function of the square root of the PNS average
density for each time step. The solid-thick line denotes the fitting formula given by Eq. (5), using the data for PNSs with the square root of the
average density larger than 0.1.

of the f -mode gravitational waves. That is, using the observed frequency of f -mode gravitational wave, ff (Tpb), the square
root of the PNS average density, X(Tpb), is determined by

X(Tpb) = 9.8582× 10−2 ×
[
1 +

{
1− 7.2673×

(
1− ff (Tpb)

0.9733

)}1/2
]
, (6)

where ff is in the unit of kHz. We stress that the evolution of f -mode frequency for accreting PNSs is different from that for
ordinary non-accreting PNSs. It is possible to explore higher average density for the black hole forming case and the f -mode
frequency evolves beyond the linear relation, which was used in the ordinary PNSs.

Furthermore, as an advantage for considering the black hole formation, we can discuss the PNS model with the maximum
mass allowed by the adopted EOS. As mentioned above, the moment when the PNS would collapse to a black hole can be
determined via the neutrino observation. The PNS models at this moment should correspond to that with the maximum mass
allowed by the adopted EOS. We remark that the maximum mass of the PNS is different from that for the cold neutron star even
with the same nuclear EOS, due to the effects of the entropy and lepton distributions including neutrinos. As shown in Table I
and Fig. 6, TBH and the evolution of f -mode gravitational waves depend on the progenitor models of PNSs and the EOS. Even
so, the observed f -mode gravitational wave can be generally fitted as Eq. (4). Hence, via Eq. (4) with the help of the neutrino
observation, one can estimate the frequency of the f -mode gravitational waves from the last moment of the PNS re-collapse to
a black hole. With the resultant f -mode frequency (or the observed f -mode frequency if the f -mode gravitational wave would
be directly observed), the average density of the PNS with the maximum mass can be estimated via Eq. (6).

Now, we check how one can determine the square root of the average density of the PNS with the maximum mass in the
scheme suggested above by using the specific PNS models considered in this study. For this purpose, we compare the square
root of the average density for PNS with the maximum mass estimated with the fitting formula (4) and the neutrino observation,
Xest, with the corresponding value, Xsim, which is known from the simulation in advance. The result is shown in Table III for
various PNS models, where the relative error determined by (Xsim −Xest)/Xsim is also shown. From this Table, we can find
that the relative error in the square root of the average density for the PNS model with the maximum mass becomes at least
less than 10% independently of the progenitor models. In fact, even though the f -mode frequency for the progenitor model of
T50-Shen deviates relatively from the fitting formula given by Eq. (5) as shown in Fig. 7, one can estimate the square root of the
average density for the PNS model with the maximum mass within less than 10% accuracy even for the model of T50-Shen.

In contrast to the f -mode frequency, one can see the complex behavior in the gi-mode frequency. It comes from the avoided
crossing with the f - and g2-modes for i = 1 and with the gi±1-modes for i > 1. For example, as shown in Fig. 4, the avoided
crossing in the g1-mode frequency for the PNS model with W40-Shen happens at Tpb ∼ (300 − 350) ms with f -mode and at
Tpb ∼ 150 and ∼ 1100 ms with g2-mode. For various progenitor models, we show the evolution of the g1-mode gravitational
waves in the left panel of Fig. 8, from which one can observe that the time evolution of the g1-mode gravitational waves strongly
depends on the progenitor models. In particular, it seems that the time when the avoided crossing happens between the g1- and
g2-mode gravitational waves strongly depends on the progenitor models.

Nevertheless, we find the universal behavior, which is insensitive to the progenitor models, in the ratio of the g1-mode fre-
quency to the f -mode frequency, fg1/ff , as shown in the right panel of Fig. 8. That is, fg1/ff can be characterized well by
the PNS compactness independently of the progenitor models, although the progenitor dependence of fg1/ff remains in the
final phase just before the PNS would collapse to a black hole [65]. Owing to this feature, one can derive the PNS compactness
at each time step via the observation of the f - and g1-mode gravitational waves. On the other hand, from the observation of
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FIG. 6: Comparison between ff obtained by eigenvalue problems (marks) and the expectation with the fitting formula given by Eq. (4)
(solid-thick lines). The left and right panels correspond to the cases for the PNS models with W40 and T50, respectively.

Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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summary	
•  we	examine	the	GW	freq.	from	PNSs	
•  one	could	see	the	evolution	of	PNS	mass	and	radius	via	the	

simultaneous	observations	of	f-	and	w1-modes	in	GWs	
•  f-	&	g1-modes	in	later	phase	are	almost	independent	of	ρs	
•  GW	signals	in	numerical	simulations	correspond	to	g1-	&	f-mode	
•  for	the	case	of	BH	formation,	one	can	find	the	PNS	properties	with	

the	maximum	mass	with	the	help	of	the	neutrino	observations	
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