Gravitational waves from supernova and protoneutron star asteroseismology

Hajime SOTANI (RIKEN) 2020.12.18.

2nd candidate as GW sources

- supernovae
 - event rate : ~1/100 yr in our galaxy
 - compered to binary merger, system is more spherically symmetric
 - less energy of gravitational waves
 - many numerical simulations show the existence of GW signals

2020/12/18 KIW7@Taipei & zoom

g-mode oscillations?

GW from PSNs

- Numerical simulations tell us the GW spectra.
- difficult
 - to extract PNS physics
- We adopt the perturbation approach to see the physic behind the GWs by identifying them with the freq. from PNS.

eigenfrequencies

- identify via linear analysis
- variables = background + perturbations

$$f = f_0 + \delta f$$

• expand the perturbed variables

 $\delta f(t,r,\theta,\phi) = \delta f(r) e^{i\omega t} Y_{lm}(\theta,\phi)$

- if background is spherically symmetric, the perturbations are independent from m
- $-\omega$ is an eigenfrequencies of star for each *I*, where f = $\omega/2\pi$
- subscript denotes the number of radial nodes in eigenfunction

non-radial Oscillations in (proto)-neutron stars

- <u>axial type oscillations</u>
 - no stellar deformation, no density variation
 - w-modes (spactime) : oscillations of specetime itself ~ M/R
- polar type oscillations
 - with density variation & stellar deformation
 - important for considering the GWs emission
 - f-mode (fundamental) ~ $(M/R^3)^{1/2}$
 - p-modes (pressure) : sound speed crossing ~ $(M/R^3)^{1/2}$
 - g-modes (gravity) : thermal/composition gradients ~ B-V frequency
 - Alfven modes
 - inertial modes (effect of rotation)
 - w-modes (spactime) : oscillations of specetime itself ~ M/R

what we learn from GW obs.

- Via direct observations of GWs, one may extract the PNS or NS properties.
 - Asteroseismology
- In fact, it is known for cold neutron stars that
 - f-mode, which is a acoustic oscillation, is characterized by the stellar average density
 - w-mode, which is a spacetime oscillation, is characterized by the stellar compactness

• If similar characterization is possible, one could extract the PNS average density and compactness, via the simultaneous observations of f- and w-modes GWs.

PNS models (HS+17)

• we adopt the results of 3D-GR simulations of core-collapse supernovae (Kuroda et al. 2016)

- R_{PNS} is defined with $\rho_s = 10^{10} \text{ g/cm}^3$

using the radial profiles as a background PNS model, the eigenfrequencies are determined.

evolution of w_1 -modes

- frequencies depend on the EOS.
 - increasing with time
 - can be characterized well by M_{PNS}/R_{PNS}
- as for cold NS, we can get the fitting formula, almost independent from EOS

evolution of f-mode

- frequencies can be expressed well by the average density independent of the EOS (and progenitor mass)
- we derive the fitting formula as a function of M_{PNS}/R_{PNS}^{3}

* Note that we neglect the g-mode oscillations in this study

determination of EOS

- GW spectra evolutions $f_f(t) \& f_{w1}(t)$ \rightarrow evolutions of $M_{PNS}/R_{PNS}^3 \& M_{PNS}/R_{PNS}$
- one can determine (M_{PNS} , R_{PNS}) at each time after core bounce \rightarrow determination of the EOS
- unlike cold NS cases, in principle one can determine the EOS even with ONE GW event !
 1.50

different two approaches

- PNS models, whose surface defined with a specific surface density, ρ_s (Model I)
 - Sotani & Takiwaki 16; 1D-Newton, without rotation
 - Sotani+17; 3D-GR, without rotation
 - Morozova+18; 2D-effective GR, without rotation
 - Radice+19; 3D-effective GR, without rotation
 - Sotani+19; 3D-GR, without rotation
 - Sotani & Sumiyoshi 19,; 1D-GR black hole formation without rotation
 - Sotani & Takiwaki 20a, b, c; 2D-effective GR without rotation
- Numerical region up to the shock radius, R_{shock} (Model II)
 - Torres-Forne+18; 2D-GR, with rotation
 - Torres-Forne+19a; 2D-GR, with rotation/2D-effective GR, without rotation
 - Torres-Forne+19b; 1D-Newton/effective GR/GR, without rotation
- With either I or II, to prepare the background PNS model for linear analysis, the numerical data is averaged in the angular direction, assuming the static solution at each time step.
 - linear analysis on the static, spherically background model.

difference in two approaches

avoided crossing in GW frequency

(Sotani&Takiwaki 20b)

- in the early phase, one can observe the phenomena of avoided crossing ulletbetween the eigenmodes.
- even in later phase, one can still observe between g_i-modes ۲

avoided crossing in GW signal?

Comment on uncertainty in ρ_s for Model I

- in the late phase after core bounce, e.g., ~ 500ms, f-mode freq. becomes almost independent of the choice of ρ_s (Morozova+18)
- we also confirm this feature, i.e., f- & g₁-modes in later phase are almost independent of ρ_s, where g₁-mode decreases with time (Sotani & Takiwaki 20b).

pulsation energy density

(kHz)

BV

$$E(r) \sim \frac{\omega^2 \varepsilon}{r^4} \left[W^2 + \ell(\ell+1)r^2 V^2 \right]$$
$$f_{\rm BV} = \operatorname{sgn}(\mathcal{N}^2) \sqrt{|\mathcal{N}^2|/2\pi}$$
$$\mathcal{N}^2 = -e^{2\Phi - 2\Lambda} \frac{\Phi'}{\varepsilon + p} \left(\varepsilon' - \frac{p'}{c_s^2} \right)$$

- f- & g₁-modes are not dominant @PNS surface \rightarrow f- & g₁-modes weakly depend on $\rho_{\rm c}$
- g_i -modes related to f_{BV} •
- g₁-mode is strongly associated with BV freq. @r=8km, which decreases with time \rightarrow decrease of g₁-mode

comparison with GW signals in numerical simulation

• GW signals correspond to g₁-mode in early phase and f-mode after avoided crossing.

GWs in SN simulation is the f-mdoe!

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **494**, 4665–4675 (2020) Advance Access publication 2020 April 24

doi:10.1093/mnras/staa1048

Three-dimensional core-collapse supernova simulations of massive and rotating progenitors

Jade Powell^{^{©1}★} and Bernhard Müller^{^{©2}}

¹OzGrav, Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia ²Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, VIC 3800, Australia

ABSTRACT

We present 3D simulations of the core-collapse of massive rotating and non-rotating progenitors performed with the general relativistic neutrino hydrodynamics code COCONUT-FMT. The progenitor models include Wolf-Rayet stars with initial helium star masses of 39 M_{\odot} and 20 M_{\odot}, and an 18 M_{\odot} red supergiant. The 39 M_{\odot} model is a rapid rotator, whereas the two other progenitors are non-rotating. Both Wolf-Rayet models produce healthy neutrino-driven explosions, whereas the red supergiant model fails to explode. By the end of the simulations, the explosion energies have already reached 1.1×10^{51} and 0.6×10^{51} erg for the 39 M_{\odot} and 20 M_{\odot} model, respectively. They produce neutron stars of relatively high mass, but with modest kicks. Due to the alignment of the bipolar explosion geometry with the rotation axis, there is a relatively small misalignment of 30° between the spin and the kick in the rapidly rotating 39 M_{\odot} model. For this model, we find that rotation significantly changes the dependence of the characteristic gravitational-wave frequency of the f-mode on the proto-neutron star parameters compared to the non-rotating case. Its gravitational-wave amplitudes would make it detectable out to almost 2 Mpc by the Einstein Telescope. The other two progenitors have considerably smaller detection distances, despite significant low-frequency emission in the most sensitive ²⁰ft²⁰ nuency band of current gravitational-wave detectors

accuracy of the Cowling approx.

- less than ~20% accuracy ۲
- f-mode with the Cowling approx. is overestimated. ullet

Remark that the accuracy could become better with larger /

$$\left(\frac{\omega_{Cow}}{\omega}\right)^2 = \frac{4\pi G\rho\ell}{3} / \frac{8\pi G\rho}{3} \frac{\ell(\ell-1)}{2\ell+1} = \frac{2\ell+1}{2(\ell-1)}$$

 $\Lambda =$

 f_{full}

2020/12/18 KIW7@Taipei & zoom

empirical formula for GW signal

universality

 at least, g₁-modes seem to be well expressed independently of EOS and progenitor models.

case for BH formation

 In any case, it can be well fitted as a function of T_{pb}, such as

$$f_f(\text{kHz}) = c_0 + c_1 \left(\frac{T_{\text{pb}}}{1000 \,\text{ms}}\right) + c_2 \left(\frac{T_{\text{pb}}}{1000 \,\text{ms}}\right)$$

 one can expect high fre. f-mode GW, even though it is not detected directly.

Universality in f-mode GWs

• The f-mode frequencies are well-expressed as a function of stellar average density, <u>independently of progenitor</u> <u>models.</u> $f_{*}(l_{*}H) = 0.0723 - 2.5$ $f_{*}(l_{*}H) = 0.0723 - 2.5$ $f_{*}(l_{*}H) = 12.5$ $f_{*}(l_{*}H) = 0.0723 - 2.5$ $f_{*}(l_{*}H) = 12.7800 Y^{2}$

$$f_f(kH) = 0.9733 - 2.7171X + 13.7809X^2$$

 $X \equiv (M_{\rm PNS}/1.4M_{\odot})^{1/2} (R_{\rm PNS}/10\,{\rm km})^{-3/2}$

• Through the f-mode GW, one can extract the PNS average density, which leads to the time evolution of PNS average density.

For PNS with maximum mass

PNS <u>at the moment when it collapses to BH</u>, corresponds to the PNS model with maximum mass.

one can know via neutrino observation

- How to determine the PNS property
- With the data of the f-mode GW, one can fit the time evolution of the f-mode GW
- 2 Owning to the neutrino observation, one can know the moment when PNS collapses to BH
- 3 The f-mode frequency is expected via 1 and 2
- 4 Via the universal relation of the f-mode, one can extract the average density of PNS with maximum mass

neutrino ob.

summary

- we examine the GW freq. from PNSs
- one could see the evolution of PNS mass and radius via the simultaneous observations of f- and w₁-modes in GWs
- f- & g_1 -modes in later phase are almost independent of ρ_s
- GW signals in numerical simulations correspond to g₁- & f-mode
- for the case of BH formation, one can find the PNS properties with the maximum mass with the help of the neutrino observations