7th KAGRA International Workshop 2020. 12/19

Polarization tests of GW170814 and GW170817 using waveforms consistent with alternative theories of gravity

Hiroki Takeda (University of Tokyo), Atsushi Nishizawa, Soichiro Morisaki

Polarization							
h	$h_{ab}(t,\hat{\Omega}) = h_A(t)e^A_{ab}(\hat{\Omega})$						
Plus	$e_{ab}^+ = \hat{e}_x \otimes \hat{e}_x - \hat{e}_y \otimes \hat{e}_y$						
Cross	$e_{ab}^{\times} = \hat{e}_x \otimes \hat{e}_y + \hat{e}_y \otimes \hat{e}_x$						
<u>Vector</u> Vector x	$e_{ab}^{x} = \hat{e}_{x} \otimes \hat{e}_{z} + \hat{e}_{z} \otimes \hat{e}_{x}$						
Vector y <u>Scalar</u> Breathing	$e_{ab}^{y} = \hat{e}_{y} \otimes \hat{e}_{z} + \hat{e}_{z} \otimes \hat{e}_{y}$						
	$e^b_{ab} = \hat{e}_x \otimes \hat{e}_x + \hat{e}_y \otimes \hat{e}_y$						
Longitudinal	$e^l_{ab} = \sqrt{2}\hat{e}_z \otimes \hat{e}_z,$						

Tests of GR by polarization Possible polarization modes in a specific theory.

Theory	Plus	Cross	Vector x	vector y	Breathing	Longitudina
General Relativity						
Kaluza-Klein theory						
Brans-Dicke theory						
f(R) theory						
Bimetric theory						

Separating the polarization modes from detector signals.

->We can test GR by the polarization modes of the gravitational waves.

3

Detector signal

Antenna pattern functions

$$F_I^A(\hat{\Omega}) \coloneqq d_I^{ab} e^A_{ab}(\hat{\Omega}).$$

represent detector response.

Reconstruction

In principle, (The number of polarizations) = (The number of detectors)

e.g. Detector =3, modes = $(+, \times, b)$

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = F \begin{pmatrix} h_+ \\ h_\times \\ h_b \end{pmatrix}$$
Reconstruction(Inverse problem) $\begin{pmatrix} h_+ \\ h_\times \\ h_b \end{pmatrix} = F$
Detector network expansion $\rightarrow M$

$$h_{1} = F_{1}^{+}h_{+} + F_{1}^{\times}h_{\times} + F_{1}^{b}h_{b}$$

$$h_{2} = F_{2}^{+}h_{+} + F_{2}^{\times}h_{\times} + F_{2}^{b}h_{b}$$

$$h_{3} = F_{3}^{+}h_{+} + F_{3}^{\times}h_{\times} + F_{3}^{b}h_{b}$$

$$F \coloneqq \begin{pmatrix} F_{1}^{+} & F_{1}^{\times} & F_{1}^{b} \\ F_{2}^{+} & F_{2}^{\times} & F_{2}^{b} \\ F_{3}^{+} & F_{3}^{\times} & F_{3}^{b} \end{pmatrix}$$

$$-1 \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \end{pmatrix}$$

 \rightarrow More polarizations can be probed. 5

Motivation

Bayesian model selection between GR and the theory allowing only scalar or vector by simple substitution of the antenna pattern functions. [LVC(2017)PRL, LVC(2019)PRL]

Tensor vs Vector

$h_I = F_I^{\mathrm{T}} h_{\mathrm{T}}$	VS	$h_I = F_I^V h_T$	-
Tensor vs	Scalar		
$h_I = F_I^T h_T$	VS	$h_I = F_I^S h_T$	

I. Lack of consideration of the angular patterns of non-tensorial radiation. -> <u>Re-analysis of pure polarization search in the improved framework.</u>

2. Almost all metric theories of gravity predict the mixed polarization modes. -> <u>Mixed scalar-tensor polarization search.</u>

6

 $\int \log B_{\rm TV} > 3 \ (GW170814) \\ \log B_{\rm TV} = 20.81 \ (GW170817)$ $\int \log B_{\rm TS} > 2.3 \ ({\rm GW170814}) \\ \log B_{\rm TS} = 23.09 \ ({\rm GW170817})$

I. Pure polarization search

arXiv:2010.14538

Radiation patterns

- Re-analyze pure polarization modes considering the angular patterns of radiation.
- (Orbital angular freq. : ω_s , reduced mass: μ , orbital radius: r, retarded time: t_{ret})

- Inclination angle dependence is determined by the geometry of the system in general.

Analysis

Hypotheses:

 $\begin{aligned} \mathcal{H}_{\mathrm{S}} &: h_{I}(t, \hat{\Omega}) = F_{I}^{b}(t, \hat{\Omega}) = F_{I}^{b}(t, \hat{\Omega}) \\ \mathcal{H}_{\mathrm{V}} &: h_{I}(t, \hat{\Omega}) = F_{I}^{x}(t, \hat{\Omega}) \\ \mathcal{H}_{\mathrm{T}} &: h_{I}(t, \hat{\Omega}) = F_{I}^{+}(t, \hat{\Omega}) \\ \end{aligned}$

 $h_{+,GR}, h_{\times,GR}$: Waveforms in GR -> IMRPhenomD, IMRPhenomD NRTidal parameters: $\boldsymbol{\theta} = (\alpha, \delta, \iota, \psi, d_I, t_c, \phi_c, m_1, m_2, \chi_1, \chi_2, \Lambda_1, \Lambda_2)$

Bayesian inference:

bilby,

cpnest

prior -> [LVC(2019)PRX.]

$$\begin{aligned} \hat{V}(\hat{\Omega})\sin^{2} \iota h_{+,\text{GR}} \\ \hat{V}(\hat{\Omega})\sin 2\iota h_{+,\text{GR}}(t) + F_{I}^{y}(\hat{\Omega})\sin \iota h_{\times,\text{GR}}(t) \\ \hat{(\Omega)}\frac{1+\cos^{2} \iota}{2}h_{+,\text{GR}}(t) + F_{I}^{\times}(\hat{\Omega})\cos \iota h_{\times,\text{GR}}(t) \end{aligned}$$

prior -> [LVC(2019)PKX.] $posterior \quad p(\theta \mid h_I, \mathcal{H}_X) = \frac{p(\theta)p(h_I \mid \theta, \mathcal{H}_X)}{p(h_I \mid \mathcal{H}_X)} \quad \leftarrow \text{ evidence}$ likelihood

<u>Bayes factor</u> $B_{XY} := \frac{p(h_I | \mathscr{H}_X)}{p(h_I | \mathscr{H}_Y)}$ How much GR is preferred compared to pure scalar or

Result: GWI708I7(BNS)

- We impose the priors on (α, δ, d_L) from the host galaxy NGC4993.

$$\log B_{\rm TV} = 21.078$$

 $\log B_{\rm TS} = 44.544$

We obtain the improved Bayes factors supporting GR.

Result: GWI708I7(BNS)

- In addition, we impose the jet prior on the inclination angle (from the constraint of the observational angle by the gamma ray burst GRB170817A.)

0.25 rad
$$< \theta_{obs}(d_L/41 \text{ Mpc}) < 0.45 \text{ }$$

[Mooley et. al.(2018)Nature,

Hotokezaka et. al.(2019)Nature Astro.]

$$\log B_{\rm TV} = 51.043$$

 $\log B_{\rm TS} = 60.271$

The Bayes factors strongly support GR.

Metzger and Berger(2012)APJ.

2. Scalar-tensor mixed polarization search

Analysis

- We also search for a mixture of polarization modes: a scalar-tensor polarization model.

$$\begin{aligned} \mathscr{H}_{\mathrm{ST}}: \ h_{I}(t,\hat{\Omega}) &= F_{I}^{+}(\hat{\Omega}) \frac{1 + \cos^{2} \iota}{2} (1 + \delta A) h_{+,\mathrm{GR}}(t) e^{i\delta\Psi} + F_{I}^{\times}(\hat{\Omega}) \cos \iota (1 + \delta A) h_{\times,\mathrm{GR}}(t) e^{i\delta\Psi} \\ &+ F_{I}^{s=b}(\hat{\Omega}) A_{S} \sin^{2} \iota h_{+,\mathrm{GR}}(t) e^{i\delta\Psi}, \end{aligned}$$

- Amplitude and phase corrections from the additional scalar radiation. Balance law: $\frac{dE}{dt} = -P_{GW}$ \longrightarrow Stationary phase *a*

- $h_{+,GR}$, $h_{X,GR}$: Waveforms in GR ->TaylorF2, TaylorF2_NRTidal

- We perform Bayesian inference for GW170814 (BBH) and for GW170817 (BNS).

•
$$\delta A = -\frac{1}{3}A_S^2, \, \delta \Psi = \frac{1}{64}A_S^2(\pi \mathcal{M}f)^{-5/3}$$

se approximation

(Location and jet prior)

Result: GW170817(BNS)

The estimated amplitude parameters such as the luminosity distance hardly changed.

Observational constraint on the amplitude of the additional scalar polarization

2.0

Summary We obtained Bayes factors that support

<u>I. We obtained Bayes factors that support GR strongly in the pure polarization search.</u> Tensor vs Vector

Thank you for your attentions!