

On the jet structure of GRBs through X-ray light curve modeling

En-Tzu Lin (林恩慈), Institute of Astronomy, National Tsing Hua University

Supervisor: Albert K. H. Kong (National Tsing Hua University) Collaborators: Fergus Hayes (University of Glasgow, U.K.), Ik Siong Heng (University of Glasgow, U.K.), Gavin P. Lamb (University of Leicester, U.K.)

Binary Neutron Star Mergers as progenitors of short GRBs

GW170817

Event rate (counts/s)

requency (Hz)

On the jet structure of GRBs through X-ray light curve modeling

- LIGO/VIRGO detected 11 confirmed compact binary coalescences in observing run O1 and O2
 - 10 Binary black hole mergers
 - Binary neutron star merger
- Binary neutron star merger GW170817
- Short GRB association confirmed by Fermi Gamma-ray Space Telescope (Goldstein et. al,

Multi-messenger Astrophysics GW + EM observation

Multi-messenger Astrophysics GW + EM observation

GRB afterglow light curves

On the jet structure of GRBs through X-ray light curve modeling

Afterglow light curves as hints to jet structure

On the jet structure of GRBs through X-ray light curve modeling

On the jet structure of GRBs through X-ray light curve investigation

- Objective
 - Jet structure
- Research framework
 - Generate X-ray afterglow light curves
 - Parameter estimation
 - Model comparison

Parameter Estimation

On the jet structure of GRBs through X-ray light curve modeling

Parameter Estimation

On the jet structure of GRBs through X-ray light curve modeling

Multi-dimensional grids across parameter space

Multi-dimensional grids across parameter space

- $\theta_{obs} \sim [0.01, \pi/4]$
- θ_j (jet opening angle) ~ [0.01, $\pi/6$]
- θ_j (jet core angle) ~ [0.01, $\pi/6$]
- ϵ_0 (kinetic energy of central segment) ~ [1e50,1e53]
- obs_times ~ [0.001,1000]

5D light curves:

LC[ϵ_0 , θ_j , θ_{obs} , θ_c , obs_time] =40x40x40x40x20

Probability distribution of jet parameters

On the jet structure of GRBs through X-ray light curve modeling

• $\theta_{obs} = 0.36$ (21 degrees) • θ_c (jet core angle) = 0.15 • ϵ_0 (kinetic energy) = 2e52

Probability distribution of jet parameters

On the jet structure of GRBs through X-ray light curve modeling

A comparison between two methods

Interpolated GRB model

On the jet structure of GRBs through X-ray light curve modeling

GRB afterglow model

Dec. 19, 2020, The 7th KAGRA International Workshop

Takeaways

- The joint discovery of GW170817 and GRB170817A opened the window for multi-messenger astronomy
- Modeling the afterglow light curve of GRBs can help us understand the structure of the jets
- We simulated high-D afterglow light curves with values across the parameter space and replaced the likelihood with a interpolation function
- The interpolated parameters
 - Advantages
 - Only have to simulate light curves one time
 - > 150 times faster than original method!
 - Model comparison (future work)

• The interpolated GRB model has the ability to constrain jet

