

Propagation of GWs with CPT violation

Kavli Institute for Astronomy and Astrophysics

Speaker: Lijing Shao (邵立晶) KAGRA International Workshop

Content

■ The most generic propagation of GWs depends on

- GW frequency
- GW polarization
- GW source direction
- For the first time, we combined 11 GW events in the catalog GWTC-1, and bounded *multiple* coefficients for generic Lorentz/CPT violation
- L. Shao, Phys. Rev. D **101** (2020) 104019 [arXiv:2002.01185] "Combined search for anisotropic birefringence in the gravitational-wave transient catalog GWTC-1"

Gravitational-wave Data

Lijing Shao (邵立晶)

KAGRA International Workshop

CPT-violating GWs 2 / 18

Gravitational Waveform (Time Domain)

Merger: numerical relativity

Ringdown: black hole perturbation

Bohé, Shao, Taracchini et al. 2017 Lijing Shao (邵立晶)

KAGRA International Workshop

CPT-violating GWs 3/18

Matched Filter

Matched fitlering is a standard analysis method for wideband

time series data [Finn 1992]

$$(\mathbf{g}|\mathbf{k}) \equiv 2 \int_0^\infty \frac{\tilde{g}^*(f)\tilde{k}(f) + \tilde{g}(f)\tilde{k}^*(f)}{S_n(f)} \mathrm{d}f$$

Lijing Shao (邵立晶)

Parameter Estimation: GW150914

GW data encode plenty of information of GW sources

Apply Matched filter to data & theory

Primary black hole mass	$36^{+5}_{-4} M_{\odot}$
Secondary black hole mass	$29^{+4}_{-4} {M}_{\odot}$
Final black hole mass	$62^{+4}_{-4} {M}_{\odot}$
Final black hole spin	$0.67\substack{+0.05 \\ -0.07}$
Luminosity distance	$410^{+160}_{-180} { m Mpc}$
Source redshift z	$0.09\substack{+0.03\\-0.04}$

LIGO/Virgo 2016, PRL

GW Transient Catalog GWTC-1 (LIGO/Virgo 2019)

	Туре	<i>m</i> ₁ [<i>M</i> _☉]	<i>m</i> ₂ [<i>M</i> _☉]	$d_L [{ m Mpc}]$	Redshift z
GW150914	BBH	$35.6^{+4.8}_{-3.0}$	$30.6^{+3.0}_{-4.4}$	430^{+150}_{-170}	$0.09\substack{+0.03\\-0.03}$
GW151012	BBH	$23.3^{+14.0}_{-5.5}$	$13.6^{+4.1}_{-4.8}$	1060^{+540}_{-480}	$0.21\substack{+0.09 \\ -0.09}$
GW151226	BBH	$13.7^{+8.8}_{-3.2}$	$7.7^{+2.2}_{-2.6}$	440^{+180}_{-190}	$0.09\substack{+0.04 \\ -0.04}$
GW170104	BBH	$31.0^{+7.2}_{-5.6}$	$20.1^{+4.9}_{-4.5}$	960^{+430}_{-410}	$0.19\substack{+0.07 \\ -0.08}$
GW170608	BBH	$10.9^{+5.3}_{-1.7}$	$7.6^{+1.3}_{-2.1}$	320^{+120}_{-110}	$0.07^{+0.02}_{-0.02}$
GW170729	BBH	$50.6^{+16.6}_{-10.2}$	$34.3^{+9.1}_{-10.1}$	2750^{+1350}_{-1320}	$0.48\substack{+0.19 \\ -0.20}$
GW170809	BBH	$35.2^{+8.3}_{-6.0}$	$23.8^{+5.2}_{-5.1}$	990^{+320}_{-380}	$0.20\substack{+0.05 \\ -0.07}$
GW170814	BBH	$30.7^{+5.7}_{-3.0}$	$25.3^{+2.9}_{-4.1}$	580^{+160}_{-210}	$0.12\substack{+0.03 \\ -0.04}$
GW170817	BNS	$1.46\substack{+0.12\\-0.10}$	$1.27\substack{+0.09\\-0.09}$	40^{+10}_{-10}	$0.01\substack{+0.00 \\ -0.00}$
GW170818	BBH	$35.5_{-4.7}^{+7.5}$	$26.8^{+4.3}_{-5.2}$	$1020\substack{+430 \\ -360}$	$0.20\substack{+0.07 \\ -0.07}$
GW170823	BBH	$39.6^{+10.0}_{-6.6}$	$29.4_{-7.1}^{+6.3}$	1850^{+840}_{-840}	$0.34^{+0.13}_{-0.14}$

Lijing Shao (邵立晶)

KAGRA International Workshop

Signals of GW Events

Liu, Shao, Zhao, Gao 2020, MNRAS [arXiv:2004.12096]

Lijing Shao (邵立晶)

KAGRA International Workshop

GWTC-1: Sky Position (LIGO/Virgo 2019)

Graviton Dispersion Relation

- **GR**: massless spin-2 metric field $\Rightarrow E = p$
- Lorentz-invariant massive graviton $\Rightarrow E^2 = p^2 + m^2$
 - Both the phase velocity E/p and the group velocity $\partial E/\partial p$

depend on the energy/frequency of graviton

- GWs gain *frequency-dependent* time delays when they arrive at the Earth
- In a FRW spacetime, one has [Will 1998, PRD57:2061]

$$\Delta t_a = (1+z) \left[\Delta t_e + \frac{D}{2\lambda_g^2} \left(\frac{1}{f_e^2} - \frac{1}{f_e'^2} \right) \right]$$

Propagation of GWs

The extra time delay results in a phase shift in $h(f) \propto e^{i\Psi(f)}$

$$\Psi(f) = \Psi_{\mathrm{GR}}(f) - rac{\pi^2 D \mathcal{M}}{\lambda_g^2(1+z)} (\pi \mathcal{M} f)^{-1}$$

- On the other hand, the waveform is *totally* calculable and deterministic in GR
- Therefore, GWs provide an observational window to the dispersion relation of graviton

Standard-model Extension

The most generic linearized gravity has the Lagrangian

[Kostelecký & Mewes 2018]

$$\mathcal{L}_{\mathcal{K}^{(d)}} = rac{1}{4} h_{\mu
u} \hat{\mathcal{K}}^{(d)\mu
u
ho\sigma} h_{
ho\sigma}$$

where $\hat{\mathcal{K}}^{(d)\mu\nu\rho\sigma} = \mathcal{K}^{(d)\mu\nu\rho\sigma i_1 i_2 \cdots i_{d-2}} \partial_{i_1} \partial_{i_2} \cdots \partial_{i_{d-2}}$

It predicts a modified dispersion relation for GWs

$$\omega = \left(1 - \zeta^0 \pm \sqrt{\left(\zeta^1
ight)^2 + \left(\zeta^2
ight)^2 + \left(\zeta^3
ight)^2}
ight)
ho$$

Standard-model Extension

$$\omega = \left(1 - \zeta^{0} \pm \sqrt{(\zeta^{1})^{2} + (\zeta^{2})^{2} + (\zeta^{3})^{2}}\right) \rho$$

$$\zeta^{0} = \sum_{djm} \omega^{d-4} Y_{jm}(\hat{\boldsymbol{n}}) k_{(l)jm}^{(d)}$$

$$\zeta^{1} \mp i\zeta^{2} = \sum_{djm} \omega_{\pm 4}^{d-4} Y_{jm}(\hat{\boldsymbol{n}}) \left[k_{(E)jm}^{(d)} \pm ik_{(B)jm}^{(d)}\right]$$

$$\zeta^{3} = \sum_{djm} \omega^{d-4} Y_{jm}(\hat{\boldsymbol{n}}) k_{(V)jm}^{(d)}$$

Therefore, gravitons of different polarization or frequency, coming from different directions have different velocity

GWTC-1 Events

A simplified/naive approach: $|\omega_{\rm GW} \Delta t| \leq 2\pi/\rho$

We have all the information available to perform the test

Shao 2020, PRD101:104019

Lijing Shao (邵立晶)

KAGRA International Workshop

Anisotropic Birefringence Combined Search

We have all the information available to perform the test

Shao 2020, PRD101:104019

Lijing Shao (邵立晶)

Parameter Space in Gravity Tests

GWTC-2: Released Recently! (LIGO/Virgo 2020)

Lijing Shao (邵立晶)

KAGRA International Workshop

CPT-violating GWs 16 / 18

Matched Filter Analysis

Mewes, PRD99:104062

Lijing Shao (邵立晶)

KAGRA International Workshop

CPT-violating GWs 18/18