

7th KAGRA International Workshop December 19th, 2020

How does a dark compact object ringdown?

Elisa Maggio Sapienza University of Rome

https://web.uniroma1.it/gmunu

Outline

- Gravitational waves as probes of strong gravity
- Dark compact objects
- Gravitational-wave signatures
- Detectability of alternative sources

Gravitational-wave detections

So far the ground-based detectors LIGO and Virgo detected **50** gravitational wave candidate events.

Abbott+, arXiv:2010.14527 (2020)

Compact binary coalescences

The signal emitted by the coalescence of compact binaries is characterized by 3 stages:

- Inspiral
- Merger
- Ringdown

Compact binary coalescences

The signal emitted by the coalescence of compact binaries is characterized by 3 stages:

- Inspiral
- Merger
- Ringdown

What is the nature of the compact remnant?

Ringdown stage

The ringdown stage is dominated by the characteristic frequencies of the remnant, the so-called **quasi-normal modes**:

$$\omega = \omega_R + i\omega_I$$

The ringdown is modeled as a sum of exponentially damped sinusoids:

$$f_{\rm GW|ringdown} = \frac{\omega_R}{2\pi}$$

$$au_{
m damping} = -rac{1}{\omega_I}$$

Ringdown detections

The fundamental quasi-normal mode has been observed in the ringdown of several gravitational-wave events. Abbott+, arXiv:2010.14529 (2020)

Abbott+, PRL 116, 221101 (2016)

The ringdown detections are compatible with **Kerr black hole remnants**. However the characterization of the remnant is still an open problem.

Test of the black hole paradigm

Kerr black holes are *uniquely* determined by 2 parameters:

- Mass
- Angular momentum

Carter, PRL 26, 331 (1971)

A test of the no-hair theorem requires the identification of **at least two quasi-normal mode frequencies** in the ringdown.

Dreyer+, CQG 21, 787 (2004)

Louder gravitational wave events and **improvements of the detector sensitivity** will allow to test the black hole paradigm.

Alternatives to black holes

There is a zoo of theoretical compact objects without horizon which:

can overcome paradoxes of BHs: Curvature singularity
 Mazur, Mottola, PNAS (2004)
 Hawking information loss

can form in the presence of dark matter fields

Liebling, Palenzuela, Liv. Rev. Rel. 20, 5 (2017)

Alternatives to black holes

There is a zoo of theoretical compact objects without horizon which:

- can overcome paradoxes of BHs: Curvature singularity
 Mazur, Mottola, PNAS (2004)
 Hawking information loss
- can form in the presence of dark matter fields

Liebling, Palenzuela, Liv. Rev. Rel. 20, 5 (2017)

- are not excluded by GW and electromagnetic observations

 Abbott+, ApJ 896: L44 (2020); Calderón Bustillo+, arXiv: 2009.05376 (2020); EHT, ApJ 875, L5 (2019)
- quantify the existence of horizons

Dark compact objects

We analyze a generic model which deviates from a black hole for its:

- Compactness since the radius of the object is at $r_0 = r_+(1 + \epsilon)$
- "Darkness" which is related to the reflectivity of the object \mathcal{R}

Cardoso, Pani, Nat. Astron. 1: 586-591 (2017)

BH membrane paradigm

A static observer outside the horizon can replace the interior of a perturbed BH by a perturbed **fictitious** membrane located at the horizon.

Damour, PRD 18, 10 (1978); Price, Thorne, PRD 33, 4 (1986)

The membrane is a **viscous fluid** with shear viscosity η and bulk viscosity ζ which are related to the reflectivity of the BH.

We generalize the membrane paradigm to any dark compact object with a Schwarzschild exterior. EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

Quasi-normal mode spectrum

We can distinguish dark compact objects from black holes through the quasinormal modes.

The quasi-normal modes are derived by perturbing the object with a gravitational perturbation:

 $\frac{d^2\psi}{dz^2} + V(z)\psi = 0$

Detweiler, Proc. R. Soc. Lond. A 352 (1977)

Cardoso, Pani, LRR 22:4 (2019)

Quasi-normal modes of dark compact objects

Totally absorbing object $\eta = \eta_{BH}$:

- The isospectrality of axial and polar modes of black holes is broken.
- The measurement accuracy of the quasi-normal mode of GW150914 agrees with a dark compact object with $\epsilon \lesssim 0.1$.

EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

Ringdown of dark compact objects

Ultracompact objects ($\epsilon \ll 1$):

- Same prompt ringdown due to excitation of photon sphere
- Echoes due to trapped modes

- Modified prompt ringdown
- No echoes

0.6[

EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

Detectability of dark compact objects

• A tentative evidence for echoes in LIGO/Virgo data has been reported

Abedi+, PRD **96**, 082004 (2017); Conklin, Holdom, PRD **98**, 044021 (2018); Abedi, Afshordi, JCAP **11**, 010 (2019)

• Independent searches argued that the statistical significance of echoes is consistent with noise

Westerweck+, PRD **97**, 124037 (2018); Nielsen+, PRD **99**, 104012 (2019); Uchikata+, PRD **100**, 062006 (2019); Lo+, PRD **99**, 084052 (2019); Tsang+, PRD **101**, 064012 (2020)

No evidence for echoes in Ligo/Virgo O3a

Abbott+, arXiv:2010.14529 (2020)

Constraints on the compactness

Current measurement accuracies impose that the compactness of the remnant cannot be smaller than 99% that of a black hole.

EM, Buoninfante, Mazumdar, Pani, PRD 102, 064053 (2020)

Constraints on the reflectivity

- **Perfectly reflecting models a**re ruled out since the energy emitted in the echoes would be larger than the energy emitted in the ringdown.
- Third generation detectors will be able to probe values of the reflectivity close to the BH one.

Testa, Pani, PRD 98, 044018 (2018)

EM, Testa, Bhagwat, Pani, PRD **100**, 064056 (2019)

7th KAGRA International Workshop

Conclusions and future prospects

- We can understand the nature of compact objects and look for new physics at the horizon scale through **gravitational waves**.
- Horizonless alternatives to black holes are not excluded by current GW measurements.
- We derived the **ringdown** and the **echo signal** for dark compact objects.
- **Future observations** will allow to perform tests of the black hole paradigm.