SEARCHING GRAVITATIONAL WAVE WITH AUTOREGRESSIVE APPROACH

DAVID C. Y. HUI

DEPARTMENT OF ASTRONOMY & SPACE SCIENCE CHUNGNAM NATIONAL UNIVERSITY SOUTH KOREA

7th KAGRA International Workshop 18-20 December 2020

COLLABORATORS

- Albert Kong (NTHU, Taiwan)
- Lupin Lin (UNIST, Korea)
- Ray Kwan Lok Li (NCKU, Taiwan)
- Kwangmin Oh (CNU, Korea)
- Sangin Kim (CNU, Korea)
- Alex Leung (MUST, Macau)
- Jianqi Yan (MUST, Macau)

DATA CHALLENGES IN GRAVITATIONAL WAVE ASTRONOMY

 Presence of non-Gaussian noise (instrumental + environmental) that are far larger than the astrophysical signal.

 $h_{\text{noise}} \sim 10^{-19}$ vs. $h_{\text{signal}} \lesssim 10^{-21}$

- Conventional detection algorithm (e.g. matched filtering) cannot pick the signal without the knowledge of its form.
- Large data volume

WISH LIST FOR DETECTION PIPELINE

 Capability of picking signals (or candidates) with unknown form
Unsupervised Learning

NOISE REDUCTION WITH STOCHASTIC AUTOREGRESSIVE MODELING

- Simple approach of analysis in time domain
- Capable to handle various kinds of noise from nonstationary autocorrelated stochastic processes.
- Not much application in astronomy until recently (e.g. exoplanet search)

Caceres et al. 2019

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (**ARIMA**) MODEL

- ARIMA model comprises 3 components:
- If the value of a variable at a given time is influenced by its *past values*, the process is **autoregressive (AR)** which can be regarded as a simple regression problem. An AR process of order *p* is modeled by:

$$x_{t} = a_{1}x_{t-1} + a_{2}x_{t-2} + \dots + a_{p}x_{t-p} + \epsilon_{t} + c$$

 ϵ_t is normally distributed random error with zero mean and unknown variance (i.e. white noise). c is a constant.

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (**ARIMA**) MODEL

- ARIMA model comprises 3 components:
- 2. If the variable has its current value depends on the *noise terms* in the previous *q* time steps, the process is described as a **moving average (MA)** model with order *q*:

$$x_t = b_1 \epsilon_{t-1} + b_2 \epsilon_{t-2} + \dots + b_q \epsilon_{t-q} + \epsilon_t + c$$

Combining both we have ARMA model which predicts the value at a given time by both lagged values and lagged errors.

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (**ARIMA**) MODEL

- ARIMA model comprises 3 components:
- 3. For a non-stationary process, an approximately stationary time series can be obtained by *differencing operation*:

$$x_t = x_t - Bx_t = x_t - x_{t-1}$$

To restore the original light curve, one has to reverse this operation (i.e. *integrate* the series back). An **integrated (I)** process is modeled as: $(1 - B)^d x_t = \epsilon_t$ AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (**ARIMA**) MODEL Combing the aforementioned three processes together into a single regression procedure, we have ARIMA(p,q,d) model:

$$(1 - B)^{d} x_{t} = \sum_{i=1}^{p} a_{i} x_{t-i} + \sum_{j=1}^{q} b_{j} \epsilon_{t-j} + \epsilon_{t} + c$$

The model parameters can be determined by maximum likelihood estimation with the orders p and q determined through certain information criterion (e.g. BIC, AIC).

TEST CASE#1 SIMULATED DATA The simulated LIGO strain series with a constant 10 Hz sinusoidal signal of h~10⁻²¹ injected.

TEST CASE#1 SIMULATED DATA

Subtract

FFT

Residual (without low-pass filter)

TEST CASE#2: LIGO DATA OF GW150914

TEST CASE#2: LIGO DATA OF GW150914 <u>I. LIGO Hanford</u>

Raw data

Residuals

TEST CASE#2: LIGO DATA OF GW150914 II. LIGO Livingston

TEST CASE#2: LIGO DATA OF GW150914

UNSUPERVISED ANOMALY DETECTION

- After the noise subtraction, events candidates can be identified as anomalies, which differ from normal instances significantly.
- Anomalies detected from different detectors (LIGO-H, LIGO-L,KAGRA,VIRGO) can be cross-correlated and analysed with clustering technique.
- The shortlisted anomalies can be taken as event candidates for further analysis.

UNSUPERVISED ANOMALY DETECTION <u>I. LIGO Hanford</u>

UNSUPERVISED ANOMALY DETECTION II. LIGO Livingston

SUMMARY & OUTLOOK

We propose a computationally efficient pipeline for handling GW data.

Further work will be devoted to improve the performance of anomaly detection with machine learning techniques (e.g. autoencoder).

THANK YOU VERY MUCH

ADDITIONAL SLIDE: TEST CASE #3

GW170814

GW170814

