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DATA CHALLENGES IN GRAVITATIONAL
WAVE ASTRONOMY

Presence of non-Gaussian noise (instrumental +
environmental) that are far larger than the
astrophysical signal.

hnoise"’ 1017 vs. |qsignal < 10-21

Conventional detection algorithm (e.g. matchea
filtering) cannot pick the signal without the knowledge
of its form.

Large data volume



WISH LIST FOR DETECTION PIPELINE

Efficiency in noise reduction

Algorithm
Efficiency

Scalable .

Robust /

Capability of picking signals (or candidates) with
unknown form l

Unsupervised Learning



NOISE REDUCTION WITH STOCHASTIC
AUTOREGRESSIVE MODELING

Simple approach of analysis in time domain

Capable to handle various kinds of noise from non-
stationary autocorrelated stochastic processes.

Not much application in astronomy until recently
(e.g. exoplanet search)

Ongmal data

Mn W’Mww"

‘f, s

0.2 04 0.6 0.8 1.0
Phase

Residuals from ARIMA model

{ %WMWM'WW

10 30

=30 -10 10 30

>
)
w 5
Eg w

O
% o
3 a
S s
. .~
&)
(IR

-30 -10

&
o

-o |
o

Caceres et al. 2019



AUTOREGRESSIVE INTEGRATED
MOVING AVERAGE (ARIMA) MODEL

ARIMA model comprises 3 components:

1. If the value of a variable at a given time is influencead
by its past values, the process is autoregressive (AR)
which can be regarded as a simple regression
oroblem. An AR process of order p is modeled by:

Xy =X T AXy o+ +aX_,+€+C

e, is normally distributed random error with zero mean
and unknown variance (i.e. white noise). ¢ is a constant.



AUTOREGRESSIVE INTEGRATED
MOVING AVERAGE (ARIMA) MODEL

ARIMA model comprises 3 components:

2. |f the variable has its current value depends on the
noise terms in the previous g time steps, the process is
described as a moving average (MA) model with
order q:

X, =be_;+bye,_r+ - +be_ +e€+c

Combining both we have ARMA model which predicts the
value at a given time by both lagged values and lagged
errors.



AUTOREGRESSIVE INTEGRATED
MOVING AVERAGE (ARIMA) MODEL

ARIMA model comprises 3 components:

3. For a non-stationary process, an approximately
stationary time series can be obtained by
differencing operation:

X, =X, — Bx, = x,— x,_4

To restore the original light curve, one has to
reverse this operation (i.e. integrate the series
oack). An integrated (l) process is modeled as:

(1 - B)ix, = ¢,




AUTOREGRESSIVE INTEGRATED
MOVING AVERAGE (ARIMA) MODEL

Combing the aforementioned three processes together
into a single regression procedure, we have

ARIMA(p,q,d) model:

P q
(1 — B)%x, = Z ax,_; + Z b€, i+ € +c
i=1 j=1

The model parameters can be determined by maximum
ikelihood estimation with the orders p and g determinead
through certain information criterion (e.g. BIC, AIC).



TEST CASE#1 SIMULATED DATA

The simulated LIGO strain series with a constant 10 Hz
sinusoidal signal of h~10-2" injected.
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TEST CAS
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TEST CASE#Z LIGO DATA OF GW150914
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TEST CASE#2: LIGO DATA OF GW150914
. LIGO Hanford
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TEST CASE#2: LIGO DATA OF GW150914
. LIGO Livingston
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TEST CASE#2: LIGO DATA OF GW150914

LIGO Livingston
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UNSUPERVISED ANOMALY DETECTION

After the noise subtraction, events candidates can be
identified as anomalies, which differ from normal
instances signiticantly.

Anomalies detected from different detectors (LIGO-H,

LIGO-L,KAGRA,VIRGQO) can be cross-correlated and
analysed with clustering technique.

he shortlisted anomalies can be taken as event

candidates for turther analysis.



UNSUPERVISED ANOMALY DETECTION
. LIGO Hanford
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UNSUPERVISED ANOMALY DETECTION
[l. LIGO Livingston
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SUMMARY & OUTLOOK

We propose a computationally efficient pipeline for handling GW data.

.

Further work will be devoted to improve the performance of anomaly

detection with machine learning techniques (e.g. autoencoder).
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ADDITIONAL SLIDE:
TEST CASE #3
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