Dark matter Axion search with riNg Cavity Experiment DANCE: Signal calibration and sensitivity evaluation

Yuka Oshima Department of Physics, University of Tokyo

Taihei Watanabe, Hiroki Fujimoto, Yuta Michimura, Koji Nagano, Ippei Obata, Tomohiro Fujita, Masaki Ando

Overview

- A new method to search for axion-like particles with a table-top experiment

 I. Obata, T. Fujita, Y. Michimura, <u>PRL 121, 161301 (2018)</u>
- DANCE: Dark matter Axion search with riNg Cavity Experiment
- Prototype experiment DANCE Act-1 is ongoing

DM search with laser interferometers

- Dark matter has not been detected yet
- Need to search in wider mass range
- Ultralight dark matter search with laser interferometers is attracting attention

Upper limits from previous researches

Sensitivity of DANCE

DANCE will improve limits by several orders of magnitude
Mass band of DANCE is complementary to that of KAGRA

Bow-tie ring cavity

- DANCE observes rotation angle of linear polarization caused by axion (if axion is DM)
- Rotated direction is inverted in a linear cavity
 → Rotation effect is cancelled out

 A bow-tie ring cavity prevents linear polarization from inverting rotated direction

Experimental setups of DANCE

Picture of the setups

Performance evaluation of a cavity

 → Finesse 2100 → Loss of light 0.91 % → Misalignment 0.9 deg 	

Data acquisition & Data analysis

- HWP is fixed to make equal amount of P and S polarization
- Record a differential power $(P_{\rm P}-P_{\rm S})(t)$, $P_{\rm P}$ and $P_{\rm S}$
- Rotation angle of linear polarization :

$$\phi(t) = \frac{(P_{\rm P} - P_{\rm S})(t)}{2(P_{\rm P} + P_{\rm S})}$$

Current estimated sensitivity

11 / 14

New setups & Future plans

- Improve finesse $\rightarrow \sim 2300$
 - Change to high quality mirrors
 - Improve alignment of mirrors
- Reduce noises \rightarrow one order of magnitude
 - Construct setups only on the 1st floor
 - Surround an optical table with plates
- Higher laser input power $\rightarrow \sim 500 \text{ mW}$
- Plan to take data for a week during New Year holidays

13 / 14

Summary

- A new table-top experiment searches for ALPs with a ring cavity
 DANCE: Dark matter Axion search with riNg Cavity Experiment
- DANCE observes rotation of linear polarization in a bow-tie cavity
- Prototype experiment DANCE Act-1 is ongoing
 - Now improving finesse and reducing noises to achieve the design sensitivity