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CaloChallenge 2022: A Community
Challenge for Fast Calorimeter Simulation
https://arxiv.org/abs/2410.21611

Table 1: Models submitted to the CaloChallange.

Dataset

Approach Model Code 1y 1 ;t e 9 3 Section
CaloShowerGAN [21] [22] v v 3.1
- .
GAN MDMA [23, 24] [25] v v 3.2
BoloGAN [26] [27] v v 3.3
DeepTree [28, 29] [30] v 34
L2LFlows [31, 32] [33] v v 4.1
CaloFlow [34, 35 36,37 v v v v 42
NF CaloINN [38] [39] v v v 4.3
SuperCalo [40] [41] v 44
CaloPointFlow [42] [43] v v 4.5
CaloDiffusion [44] [45] v v v v 5.1
CaloClouds [46, 47] [48, 49| v 5.2
Diffusion CaloScore [50, 51 [52, 53] Vv v v 5.3
CaloGraph [54] [55] v v 5.4
CaloDiT [56] [57] 5.5
Calo-VQ [58] [59] v v v 6.1
CaloMan [60] 6] v v 6.2
VAE DNNCaloSim [62, 63] [64] v 6.3
: Geant4-Transformer [63] [66] v 6.4
CaloVAE+INN [38] [39] v v v v 6.5
CaloLatent [67] [68] v 6.6
. CaloDREAM [69] [70] v 7.1

CFM -

CaloForest [71] [72] v v 7.2
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Metrics (Sec. 8)

High-level Features (Histograms)
Pearson Correlation Coefficient (PCC)
Classifier-based Metrics

Computer Science-inspired Metrics
Manifold-based Metrics

Generation Timings
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Memory Requirements



Classifier-based Metrics

Classifiers offer a way to perform a two-sample test
that is sensitive to the full distribution, including
correlations between features.

Here we focus on two different classifier tests. The
first one, a binary classification task, compares each
submission with the Geant4 test set. The second one,
a multiclass classification task, compares all
submissions with each other. For each, we consider
two different neural network architectures.



Binary classification

The binary classification test evaluates how well the
underlying distribution was learned and therefore how
close the generated distribution is to the reference. It
relies on the Neyman-Pearson Lemma, stating that the
most powerful classifier to distinguish two samples is
their likelihood ratio.

If a well-trained classifier is unable to distinguish
submitted samples from the Geant4 test set, we
conclude that the submission replicates the Geant4
distribution well. The result of this test, however,
depends on the preprocessing that was applied to the
data.



Binary classification

the submission replicates the GEANT4 distribution well [108| [185]. The result of this
test, however, depends on the preprocessing that was applied to the data. Using the
calorimeter showers in the physical space lets the classifier focus on the brightest voxels
only, since energy depositions in them are orders of magnitude above the low-energy
depositions. Applying a logarithm or logit transformation, enhances the sensitivity to
mismodeling in them. While this gives a better understanding on whether or not the
entire distribution was learned well, it might be that the difference is only in features and
correlations that are irrelevant for the down-stream physics analysis. For that reason,

we consider two different sets of input features. The first one are the energy depositions
in the voxels (called “low-level” observables), the second one are the observables we
introduced in Section [8.1| (called “high-level” observables).

e The energy deposition in each voxel: Z,.

e The energy depositions in each layer of the calorimeter, as the sum over all voxels
in that layer: E; =3 T,,.

e The total energy deposition in the shower, as sum over all voxels, normalized to
the incident energy: Egep/FEine = Za,iIi'l/Ei"C'

e The centers of energy in 7, ¢, and r direction, defined via ¥ 1T,/ >", Tis. The
locations [, are either ¢, = r,8in,, 7. = 1, COS @, O 14, Where 7, and «, are the
centers of the voxels in o and r. These are taken as the mean of the voxel boundary
values defined in the binning.xml files. The sum goes over all voxels a in a given
layer.

e The width of the center of energy distributions in n, ¢, r direction:

o The sparsity, defined as 1 minus the activity, with the activity being the fraction




Binary classification:
Figure of merit AUC

The figure of merit in this setup is the AUC, the area under the receiver operating
characteristic (ROC) curve. The ROC curve shows the true positive rate (TPR) as a
function of the false positive rate (FPR). In a random classifier, the TPR will grow
linearly with the FPR giving a AUC of 0.5. In a classifier that can separate the two
datasets perfectly well, the ROC curve will become a step function, so the AUC becomes
1. We train ten classifiers with different random initialization and average the AUCs
when reporting the results.
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Binary classification

AUCs of binary classification: submission vs. GEANT4, dataset 1 - pions
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Figure 52: Low-level and high-level AUCs for evaluating GEANT4 vs. submission of
ds 1 — «*, averaged over 10 independent evaluation runs. For the precise numbers, see
Table|C§]




Moving on to classifier-based metrics, we find the AUCs
of high- and low-level observables in figure 52 (and table
C8). Here we observe several things. First, the AUC for
separating the training and test Geant4 samples is larger
than the expected value of 0.5. This is due to the fact
that two slightly different versions of the ATLAS software
were used due to technical problems in generating high
statistics with the old version used for the ATLAS internal
training. The differences were expected and deemed
small enough to be irrelevant for physics applications.
The AUC from the generative models will have this value
as the maximum achievable separation instead of the
usual 0.5.
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Second, we see very low AUCs for CaloDiffusion,
which was already indicated by the separation
powers of the observables before.

Third, we see a low AUC for DNNCaloSim in the low-
level observables which is, however, not reflected in
the AUC of the high-level observables. This latter fact
also correlates with the separation powers seen
before. Other than that, we see overall good scores
from diffusion and normalizing flow-based models,
whereas GAN and VAE-based models show AUCs
worse than 0.9.



Multiclass classification

With the multiclass classification setup, we try to
assess which of the submissions is closest to Geant4.
The method was introduced in [193] in the context of
comparing hydrodynamical galaxy simulations, and
subsequently applied to high-energy physics
scenarios in [31, 194]. It relies on training a single
classifier with cross entropy loss on the task
“submission 1 vs. submission 2 vs. ... vs. submission

”

n-.

When evaluating the trained classifier on a Geant4-
based test set, we can read off which submission the
Geant4 sample is closest to.



Multiclass classification

As figure of merit, we consider the average of the log posterior [193]. It is defined
as
: _ 1
LP(model i|samples j) = N Z 10g Prodel i (Tk), (41)
TLE]
the average logarithm of the probability that samples 7 come from the model
(submission) 7. Here, the index k goes over all N samples in the set 7. As a cross
check of the quality of the trained multiclass classifier, we look at its performance in
identifying the held-out test sets of each submission. A well-trained classifier will be
able to distinguish the individual submissions from each other, so

LP(model i|samples 7 = 7) > LP(model i|samples j # i). (42)
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Feasibility Study of Measuring A° — nn" Using a High-Granularity
Zero-Degree Calorimeter at the Future Electron-Ion Collider

Sebouh J. Paul®, Ryan Milton*, Sebastidn Mordn®, Barak Schmookler®, Miguel Arratia®!

2Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA

Abstract

Key measurements at the future Electron-lon Collider (EIC), including first-of-their-kind studies of kaon structure, require the
detection of A” at forward angles. We present a feasibility study of A — nz” measurements using a high-granularity Zero Degree
Calorimeter to be located about 35 m from the interaction point. We introduce a method to address the unprecedented challenge
of identifying A% with energy O(100) GeV that produce displaced vertices of O(10) m. In addition, we present a reconstruction
approach using graph neural networks. We find that the energy and angle resolution for A” is similar to that for neutrons, both of
which meet the requirements outlined in the EIC Yellow Report. Furthermore, we estimate performance for measuring the neutron’s
¢ direction in the A" rest frame, which reflects the A” spin polarization. We estimate that the neutral-decay channel A° — nn® will
Q greatly extend the measurable energy range for the charged-decay channel A — pz~, which is limited by the location of small-
angle trackers and the accelerator magnets. This work paves the way for EIC studies of kaon structure and spin phenomena.

¢ 2024
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HEXPLIT algorithm

Epx = 103 GeV, Bx0=0.6 mrad, z,1x=25.5m Ep = 152 GeV, Ope=1.1 mrad, zyx=27.1m Epe = 248 GeV, Bp0=1.1 mrad, zux=12.4 m
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Figure 2: Top row: event display for example events, with the hits color coded by energy deposited, in units of MIPs. Bottom row: the same events, with subcell
hits from HEXPLIT algorithm color-coded by which cluster the subcell hits have been assigned to by the 3D topological cluster described in the text.
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