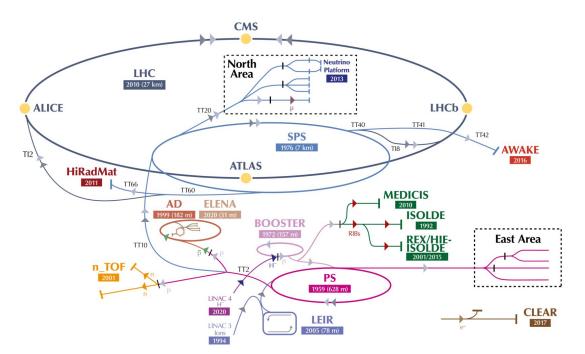
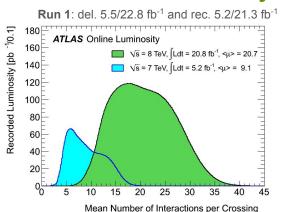
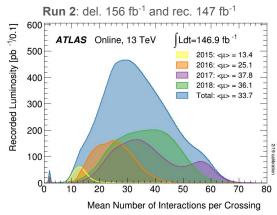
Operational Experience and Performance with the ATLAS Pixel detector at the Large Hadron Collider at CERN

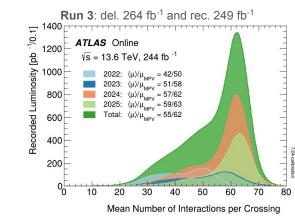
Tobias Bisanz (TU Dortmund) on behalf of the ATLAS Collaboration HSTD 14 - 17.11.2025

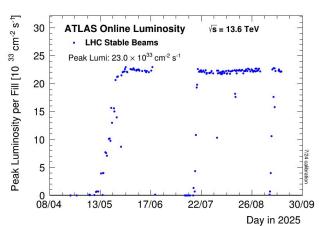


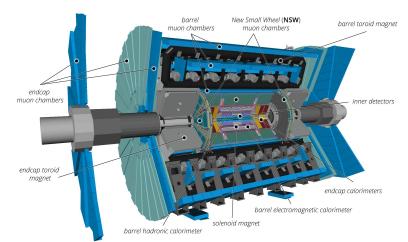
Gefördert durch:

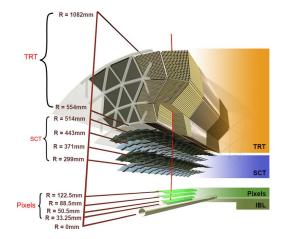

The LHC




- The Large Hadron Collider at CERN
- Largest and most energetic hadron collider
- Nominal proton-proton collisions, but also heavy ion operation
- Operating at a centre of mass energy of 13.6 TeV
- Bunch structure with 25 ns spacing
- Houses several large (multi-purpose) experiments:
 ALICE, ATLAS, CMS, LHCb

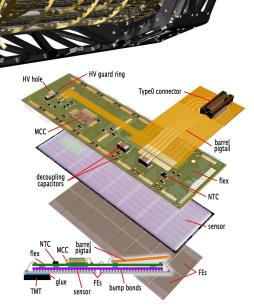

LHC & Luminosity


- LHC Peak Luminosity [cm⁻²sec⁻¹]
 - o TDR: 1x10³⁴
 - o Today: 2.3x10³⁴
- LHC <µ>
 - o TDR: ~ 20ish
 - o Today: **64** (while levelling)
- In addition: long levelling periods with a very good control of pile-up (μ)



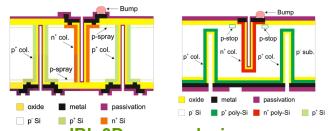
The ATLAS Detector

- Typical HEP detector with muon systems, calorimeters and tracking and vertexing detectors
- The ATLAS Inner Detector constituted of transition radiation tracker (TRT), silicon strip modules (SCT), and pixels (IBL+PIX)
- Innermost layers are pixellated silicon detector → ATLAS Pixel and IBL detector
- Collisions in ATLAS since 2009



The Pixel Detector

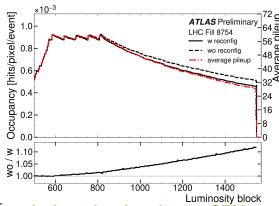
- The ATLAS Pixel detector
 - 1.7 m² of silicon
 - 80 million channels
 - Three barrel layers (5 cm to 12 cm) and three disks on each side
 - |η| coverage up to 2.5
 - C₃F₈ evaporative cooling
 - Innermost barrel layer: B-Layer
- Pixel modules
 - Planar n-in-n sensors with 400 μm x
 μm pixellated matrix
 - 250 nm CMOS read-out chip
 - Radiation hard up to 1x10¹⁵ n_{eq}cm⁻²



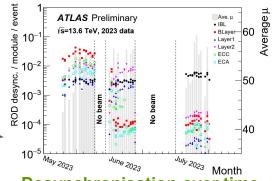
The IBL Detector

- The IBL detector ("insertable B-Layer")
 - 0.2 m² of silicon
 - 12 million channels
 - Single layer at 3.3 cm radius
 - CO₂ evaporative cooling
- IBL modules
 - Mostly planar n-in-n sensors with
 250 μm x 50 μm pixels
 - o n-in-p 3D sensors in forward region
 - Read-out chip in 130 nm CMOS
 - Radiation hard up to 5x10¹⁵ n_{eq}cm⁻²

Installed for operation from 2015 onwards!

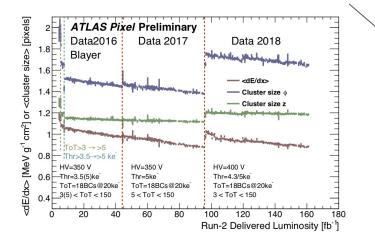


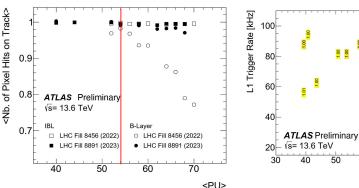
IBL 3D sensor designs (different vendors)



Operations in Run 3

- High <µ> and long periods of LHC levelling make Run 3 conditions very challenging
- Work on the system to improve stability and resilience due to high hit rate and radiation
- E.g. mitigation of single-event-upsets in the read-out chips
 - SEU will cause misconfiguration of chip
 - Dead-time free reconfiguration of read-out chips
- Or reduction of desynchronisation with the help of a novel read-out firmware
 - Reduction of desynchronisation by orders of magnitude


Induced noise due to SEU



Operation in Run (2+)3

- Very good performance, especially for a detector in operation since start of LHC
- While the first years in Run 2 were dominated by read-out limitations we are now in the era of radiation damage

Analogue thresholds given in table

Layer	2015	2016	2017	2018	2022	2023		
IBL	2500	2500	2500	2000	1500	1500		
B-Layer	3500	5000	5000	4300*	3500*	4700		
Layer 1, 2	3500	3500	3500	3500	3500	4300		
Disks	3500	3500	4500	3500	3500	4300		
increasing ar	nd <mark>decreas</mark>							

effects of radiation damage: c.f. next slides

read-out limitations

technische universität

LHC Fill 8891

-1 <u>Ş</u> 0.98⊢

0.94닖

0.92 0

0.9 ₹

0.88

0.86

80

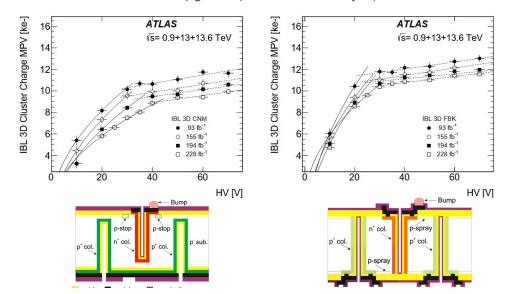
dortmund

Performance in Run 3

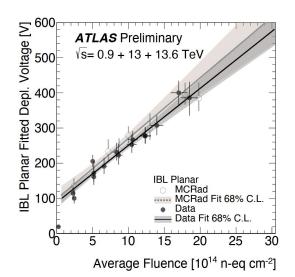
mid-2025 numbers

- Working fraction of detector kept high
- Recently issues which require modules to be disabled seem to increase a bit
- However, we are several years and twice the expected dose above our design for the original pixel detector
- Some issues can be mitigated by increase in digital supply voltage, but we are approaching (power) limits there as well
- The IBL detector still in good shape and only single read-out chips with issues
- Performance of individual modules less important than overall data quality
- Data quality efficiency in Run 3 for Pixel was 99.7% or higher

						,		
Disab	led	2018		2024		2025		
modu	les	Disabled/Total	[%]	Disabled/Total	[%]	Disabled/Total	[%]	
Pixel	B-Layer	18/286	6.2	21/286	7.3	22/286	7.7	
	Layer 1	29/494	5.8	18/494	3.6	19/494	3.8	
	Layer 2	33/676	4.8	50/676	7.4	61/676	9.0	
	Disk	15/288	5.2	16/288	5.2	15/288	5.2	
	Total	95/1744	5.4	105/1744	6.0	117/1744	6.7	
IBL (F	ront End)	3/448	0.7	5/448	1.1	5/448	1.1	
Total	600 D 200 D 200 B 20	98/2192	4.5	110/2192	5.0	122/2192	5.6	

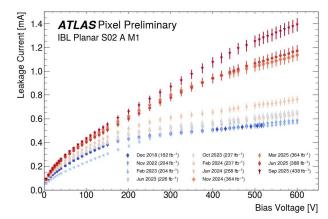

Overall good enabled fraction, but the detector is aging and the situation is getting worse

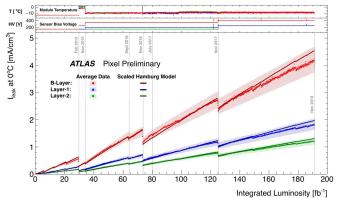
ATLAS pp Run-3: August 2025 Update														
Trigger	Inn	er Trac	ker	Calori	meters		Muon	Spectro	meter		Magr	ets	Globa	I
L1+HLT	Pixel	SCT	TRT	LAr	Tile	MDT	RPC	TGC	MM	sTGC	Solenoid	Toroid	Lumi. calib.	Other
99.6	100	99.7	99.9	99.9	100	98.9	99.8	99.9	100	100	100	100	99.5	99.5
Good for physics: 97.0% (40.5 $\mathrm{fb^{-1}})$														


Radiation Damage - Depletion Voltage

- Radiation to sensor bulk introduced deep defects → change in the effective doping concentration → higher voltage for full depletion
- Regular scans where voltage is stepped through to measure response (IV-curves or collected charge)
- In particular also investigating IBL 3Ds which are of interest for the ATLAS ITk upgrade (innermost ITk layer)

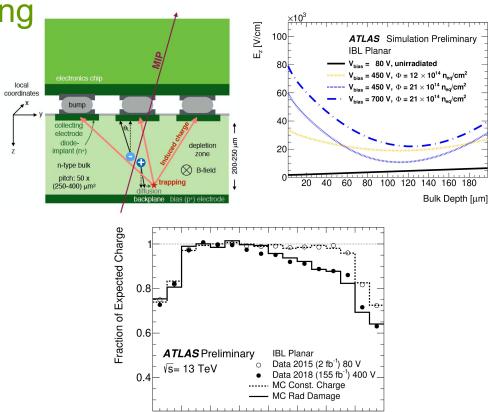
expected/received non-ionising dose in 10¹⁵ 1 MeV n_{eq} cm⁻²


	end of 2025	end of Run 3	design
IBL	3	3.5	5
B-Layer	1.8	2	1



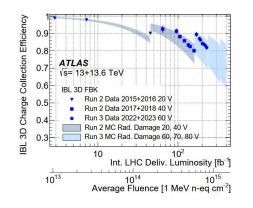
Radiation Damage - Leakage Current

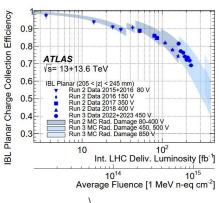
- Aside from depletion voltage, leakage current important to monitor and predict
- Increase in leakage current could hit power supply limit or thermal runaway
- Modules kept at low temperature to prevent annealing
 - Decreasing the temperature would reduce leakage current, but not much headroom in cooling
 - Beneficial annealing would also reduce leakage current, but not foreseen except a few days when cooling maintenance
- Predictions with the Hamburg model, need scaling factors, but overall good prediction
- Leakage current not expected to be an issue even at end of Run 3

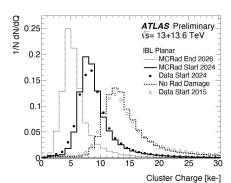


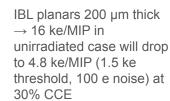
Radiation Damage - Modelling

- As radiation damage becomes more and more dominant - modelling of it is more important
- The radiation damage digitiser has been implemented and is used in ATLAS Monte-Carlo production since Run 3
- Model uses E-fields from TCAD, computed Ramo-potential maps and trapping constants as input
- Publication: <u>JINST 14 (2019) P06012</u>

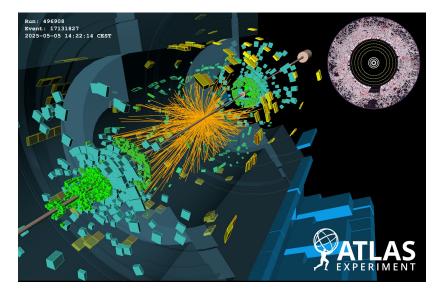



Depth of Charge Generation [µm]



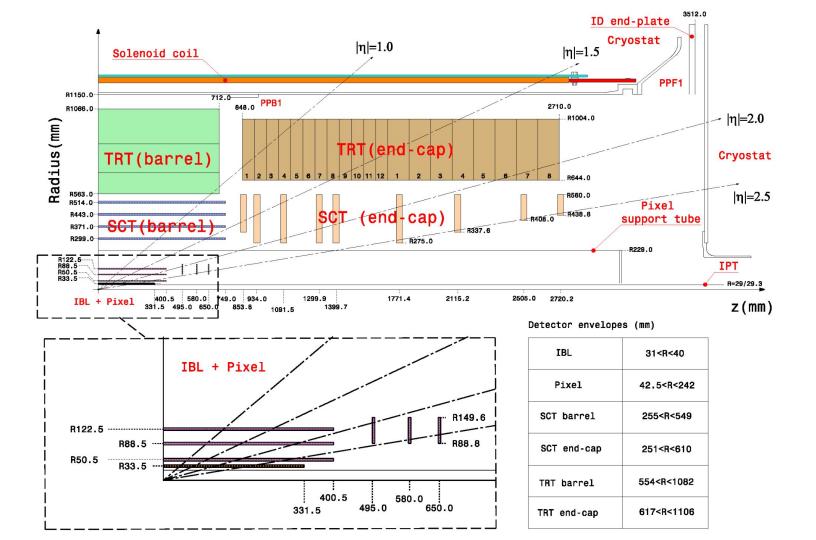

Radiation Damage - Charge Collection Efficiency

- Decrease of charge collection efficiency (CCE) due to trapping because of radiation damage
 - CCE in IBL planar (and B-Layer) will drop to about 30% and only partially recovered by increase in bias voltage
 - IBL 3Ds retain better CCE shorter charge collection distance and p-type bulk
- However, hit-on-track performance deteriorates significantly less and we only expect a loss of up to 3% hits-on-track due to this
- Closely monitor these effects, we do not anticipate the need to reduce the thresholds: IBL at 1.5 ke threshold, expect 16 ke at 100% CCE for a MIP



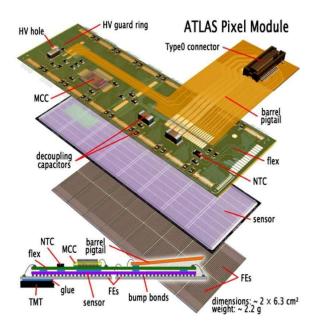
Summary

- The ATLAS Pixel detector is the most irradiated pixellated semiconductor detector we have at a collider based experiment
- As we are approaching the end of Run 3 and hence the end of lifetime, some parts have exceeded their design values by a substantial amount
- While certain parts are aging, anticipatory planning (e.g. installation of IBL, read-out upgrades) improved the resilience and allows good operation up to today
- Good performance in recording efficiency and data quality despite challenging conditions in Run 3



recorded pp-event in ATLAS

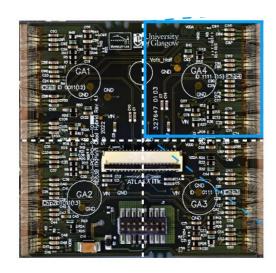
Thank you for your attention!



BACKUP

Pixel Modules

Original Pixel system

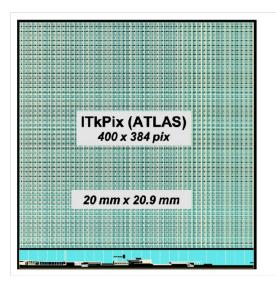

- 16 FEs per module
- One MCC to control and aggregate data (HCCStar for ITk strips)
- Planar n-in-n sensor

Insertable B-Layer (IBL)

- o (mostly) 2 FEs per module
- (mostly) n-in-n planar
- (few) n-in-p 3D sensors in forward region

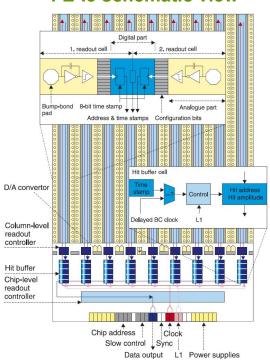
ITk

- In the barrel 3x1 or 2x2 FE modules
- Innermost layer 3D
- Outer layers planar n-in-p sensors


ATLAS Pixels: The Readout Chips

- 250 nm CMOS
- 7.6 mm x 10.8 mm chip size
- 160 x 18 pixel matrix
- FE output 40 Mbps (MCC output at 2x80 Mbps)
- Hit rate 200 MHz cm⁻²
- 74% active area

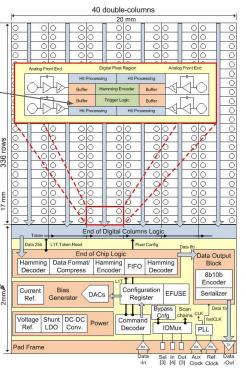
- IBM 130 nm CMOS
- 20.2 mm x 19.0 mm chip size
- 336 x 80 pixel matrix
- Each FE outputs at 160 Mbps
- Hit rate 400 MHz cm⁻²
- 89% active area



- TSMC 65 nm CMOS
- 20.0 mm x 20.9 mm chip size
- 384 x 400 pixel matrix
- Four lanes output at up to 1.28 Gbps each
- Hit rate 3 GHz cm⁻²
- FE-to-FE data aggregation

FE-I3 vs. FE-I4 Digital Architecture

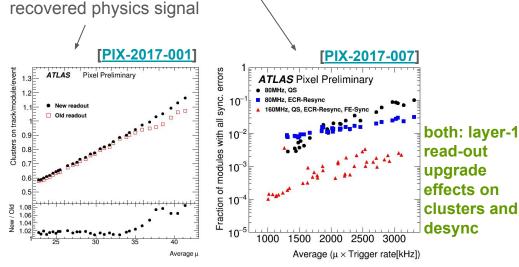
FE-I3 schematic view

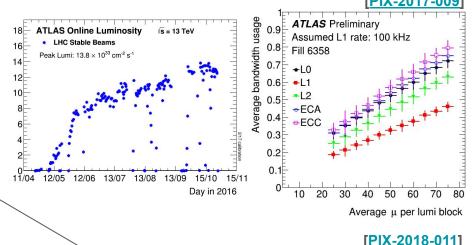

Redesign of the digital part going from FE-I3 to FE-I4

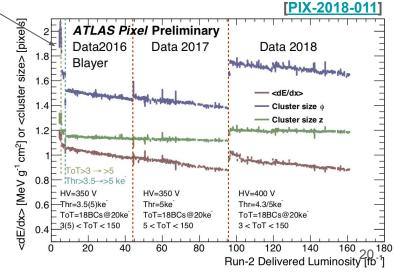
Local hit buffer was introduced, only hits which are triggered are sent to end-of-column (EOC)

→ only about 0.25 % of the hits are transferred to EOC, much reduced rate on DC bus

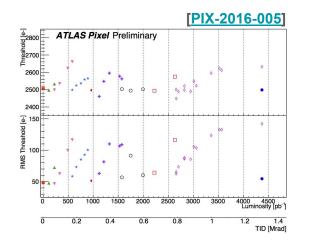
On FE-I3 this bus activity can only be reduced by increasing analogue threshold

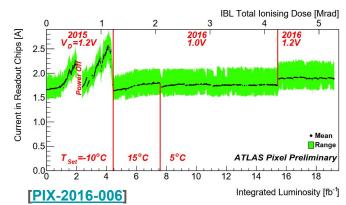

FE-I4 schematic view



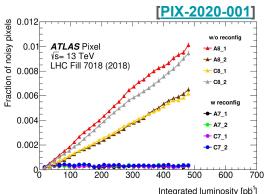

Run 2: Read-Out Limitations

At the intensity ramp up in 2016, the Blayer thresholds had to be increased in order to cope with high bandwidth usage as LHC inst. luminosity was exceeding 1x10³⁴ cm⁻²sec⁻¹


Subsequent upgrade of the off-detector read-out system for all layers reduced desynchronisation and

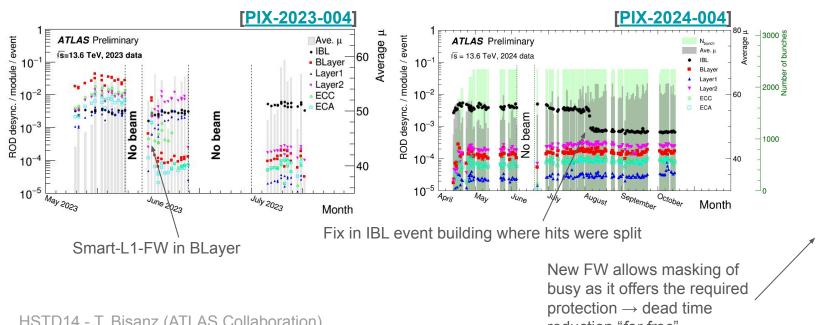


Run 2: FE-I4 Radiation Induced Effects


- Radiation not only bulk damage, also surface damage
 - shift of working point, TID bump at a the first few Mrad → changes in IBL operation and frequent retuning
 - Total ionising dose (TID) effect causes increased leakage in **NMOS**
- Pre-irradiation of 130 nm ITk Strip **ASICs**

Publication on SEU in FE-I4: [G. Balbi et al 2020 JINST 15 P060231

- Single event effects cause bit flips in latches or transient glitches which can modify memory
- Mitigation implemented in the read-out to reconfigure FE configurations without introducing any dead-time (exploiting ATLAS ECR dead-time)
- ITkPix has trickling configuration where "idle" time on the TX lines is used to reconfigure FE memory



Run 3: Improving Desynchronisation

The ATLAS Pixel detector (including IBL) is a fully synchronous detector. Large events take longer to process.

Problem: FE-I3 pixel modules can only process 16 triggers → triggering them more often cause desynchronisation

Solution: skip triggers if 16 are pending \rightarrow "smart-L1-forwarding" (requires special data-taking firmware)

Item	Busy Frac. (Time)	Busy Frac. (Lumi)
IBL	0.17 %	0.17 %
BCM	0.00 %	0.00 %
Pixel	0.19 %	0.17 %

run 499259 3. June 2025

Item	Busy Frac. (Time)	Busy Frac. (Lumi)
IBL	0.05 %	0.05 %
BCM	0.00 %	0.00 %
Pixel	0.10 %	0.09 %

reduction "for free"