ALICE 3 SILICON TRACKER DESIGN, STATUS AND PROSPECTS

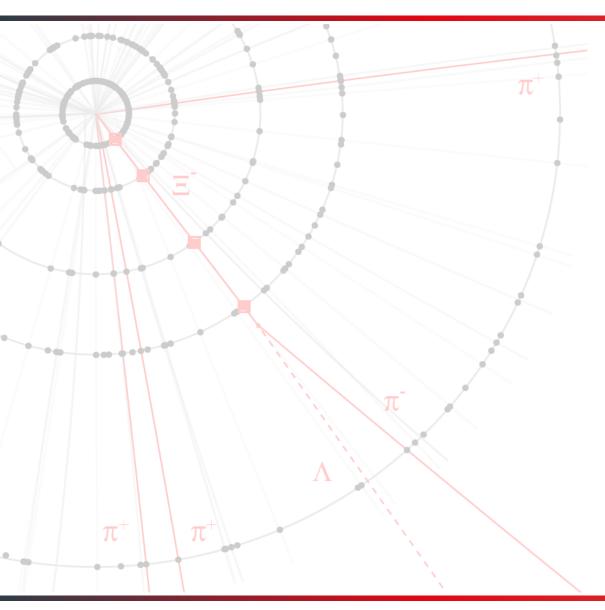
Kshitij Agarwal¹, for the ALICE Collaboration

/sɪ.t̪ɪd͡ʒəg.ɾə.uaːl/

¹ University and INFN Trieste (IT)

The 14th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors

Academia Sinica, Taipei (TW); 16 – 21.11.2025



OVERVIEW

Introduction

Run 1 ... 4: Evolution of the ALICE Inner Tracking Systems

■ Run 5: ALICE 3 Silicon Tracker

Overview and Layout

Sensor Development

Requirements and Challenges

Learnings from ITS3 Sensor R&D

CMOS 65 nm Technology Qualification

Sensor R&D and simulations

Module and Stave: Design and Mechanics (incl. cooling)

- Vertex Detector
- Middle Layers and Outer Tracker
- Lightweight Middle Layers Alternatives

Summary and Outlook

INTRODUCTION

EVOLUTION OF THE ALICE SILICON TRACKER (Run 1 ... 4)

Run 1 2009 – 2013 Run 2 2015 – 2018 Run 3 2022 – 2026 Run 4 2030 – 2033

Run 5 2036 – 204

ALICE 1

Pb-Pb: 1 kHz, pp: 200 kHz

ALICE 2

Pb-Pb: 50 kHz, pp: 1000 kHz

ALICE 2.1

Pb-Pb: 50 kHz, pp: 1000 kHz

ALICE 3

b-Pb: 100 kHz, pp: 24 MHz

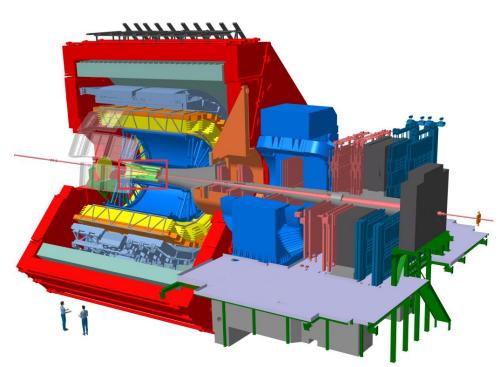


Figure Ref: ALICE-PHO-SKE-2017-001-4

EVOLUTION OF THE ALICE SILICON TRACKER (Run 1 ... 4)

Run 1 2009 – 2013 Run 2 2015 – 2018 Run 3 2022 – 2026 Run 4 2030 – 2033

2036 – 204

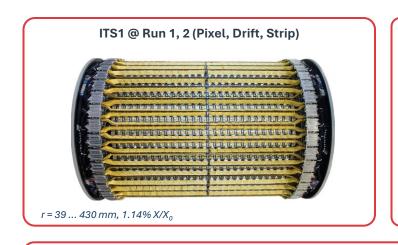
ALICE 1

Pb-Pb: 1 kHz, pp: 200 kHz

ALICE 2

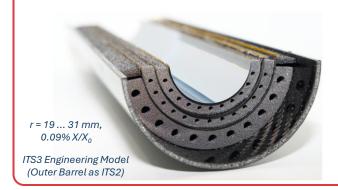
Pb-Pb: 50 kHz, pp: 1000 kHz

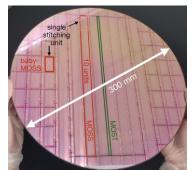
ALICE 2.1


Pb-Pb: 50 kHz, pp: 1000 kHz

ALICE 3

-Pb: 100 kHz, pp: 24 MHz

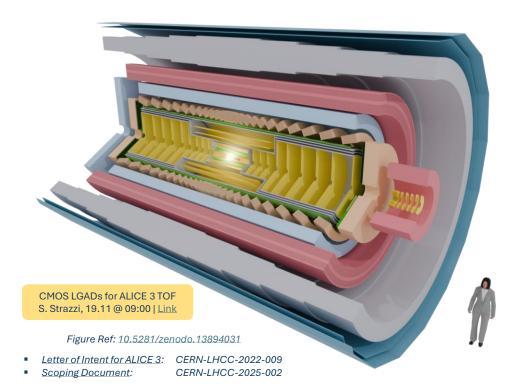

Upgrades aimed to improve the pointing resolution, while operating at 50 kHz Pb-Pb interaction rate



Characterisation of ITS3 Stitched Prototypes (ER1) N. Tiltmann, 17.11 @ 16:10 | Link

Radiation Performance of ITS3
Prototypes (APTS)
I. Sanna @ Poster Session | Link

ALICE 3 SILICON TRACKER (RUN 5)



Run 1 Run 2 Run 3 Run 4 Run 5 2009 – 2013 2015 – 2018 2022 – 2026 2030 – 2033 2036 – 2041

ALICE 1 ALICE 2 ALICE 2.1 ALICE 3

Pb-Pb: 1 kHz, pp: 200 kHz Pb-Pb: 50 kHz, pp: 1000 kHz Pb-Pb: 1000 kHz Pb-Pb: 1000 kHz Pb-Pb: 1000 kHz

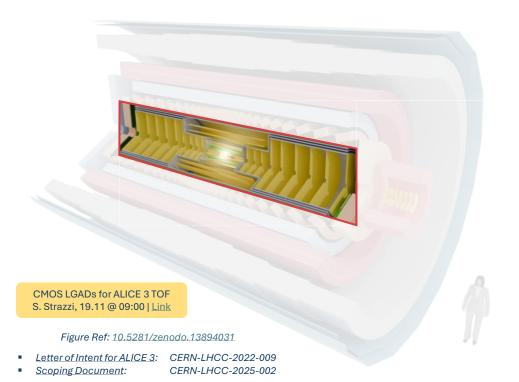
ALICE 3 is a new, compact, low mass, all-silicon detector designed to exploit HL-LHC as heavy-ion collider

ALICE 3 SILICON TRACKER (RUN 5)

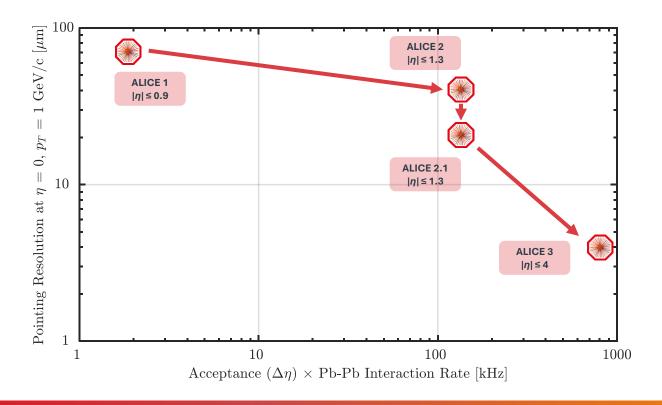
 Run 1
 Run 2
 Run 3
 Run 4
 Run 5

 2009 - 2013
 2015 - 2018
 2022 - 2026
 2030 - 2033
 2036 - 2041

 ALICE 1
 ALICE 2
 ALICE 2.1
 ALICE 3

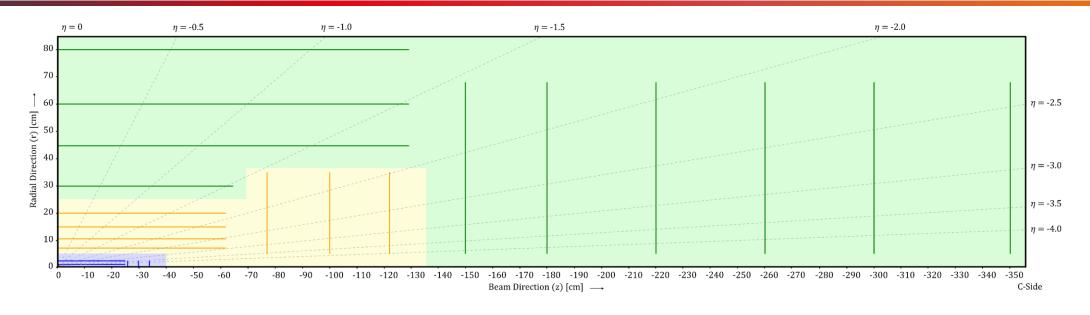

Pb-Pb: 1 kHz, pp: 200 kHz

Pb-Pb: 50 kHz, pp: 1000 kHz


Pb-Pb: 50 kHz, pp: 1000 kHz

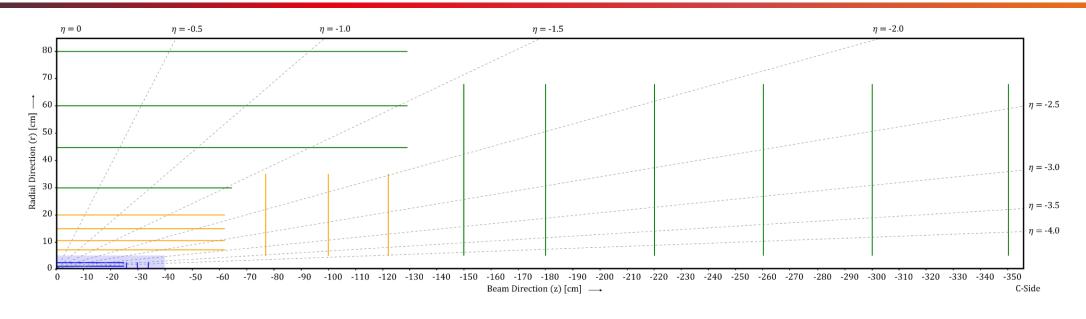
Pb-Pb: 50 kHz, pp: 24 MHz

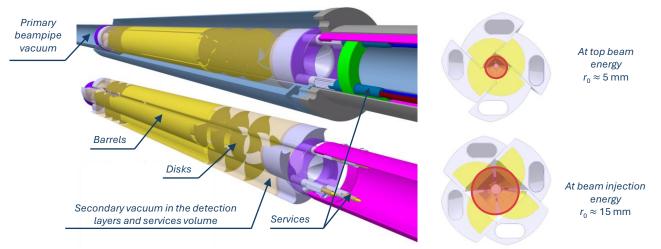
ALICE 3 is a new, compact, low mass, all-silicon detector designed to exploit HL-LHC as heavy-ion collider



ALICE 3 Silicon Tracker targets unprecedented pointing resolution at even higher Pb-Pb interaction rates (50 \rightarrow 100 kHz) and acceptance ($\Delta \eta = 2.6 \rightarrow 8$)

ALICE 3 SILICON TRACKER: LAYOUT





Tracker Sub-Systems		No. of Layers	Intrinsic	Barrel	Layers	Di		
		(Barrels + Disks)	Resolution [µm]	Length Δz [cm]	Radius r [cm]	Position z [cm]	R _{in} R _{out} [cm]	Roles
Inner	Vertex Detector	3 + (3 x 2)	2.5	50	0.5 2.5	26 34	0.5 2.5	Vertexing
Tracker	Middle Layers	4 + (3 x 2)	10	124	7 20	77 122	5 35	Tracking
Outer Tracker		4 + (6 x 2)	10	129, 2 x 129	30 80	150 350	5 68	Tracking

VERTEX DETECTOR: OVERVIEW

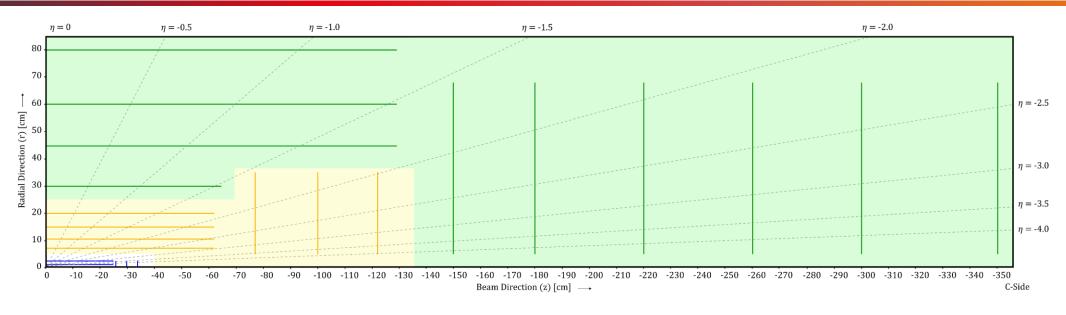
Vertex Detector

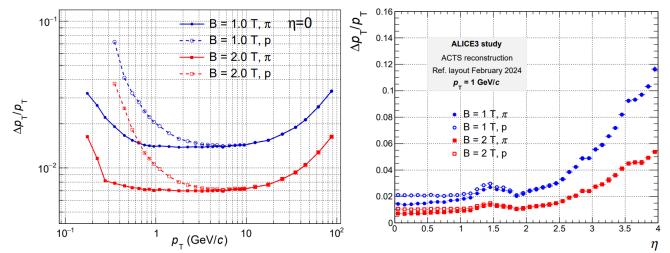
Based on wafer-scale, ultra-thin, curved MAPS

Radial distance from beam: 5 mm (inside beam pipe, retractable)

Unprecedented spatial resolution: ≈ 2.5 μm

Stringent material budget: $\approx 0.1\% X/X_0$ per layer


Small pixel pitch: 10 μm


High radiation levels: $3 \times 10^{15} \, 1 \text{MeV} \, n_{\text{eq}} / \text{cm}^2 + 200 \, \text{Mrad}$

• High hit rates: 100 MHz/cm², \approx 35 MHz/cm² (avg.)

MIDDLE LAYERS & OUTER TRACKER: OVERVIEW

Middle Layers and Outer Tracker

Large area and coverage: 60 m^2 , $|\eta| \le 4$

High momentum resolution: 1-2%

Less stringent material budget: $\lesssim 1\% X/X_0$ per layer

Fast time resolution: 100 ns RMS

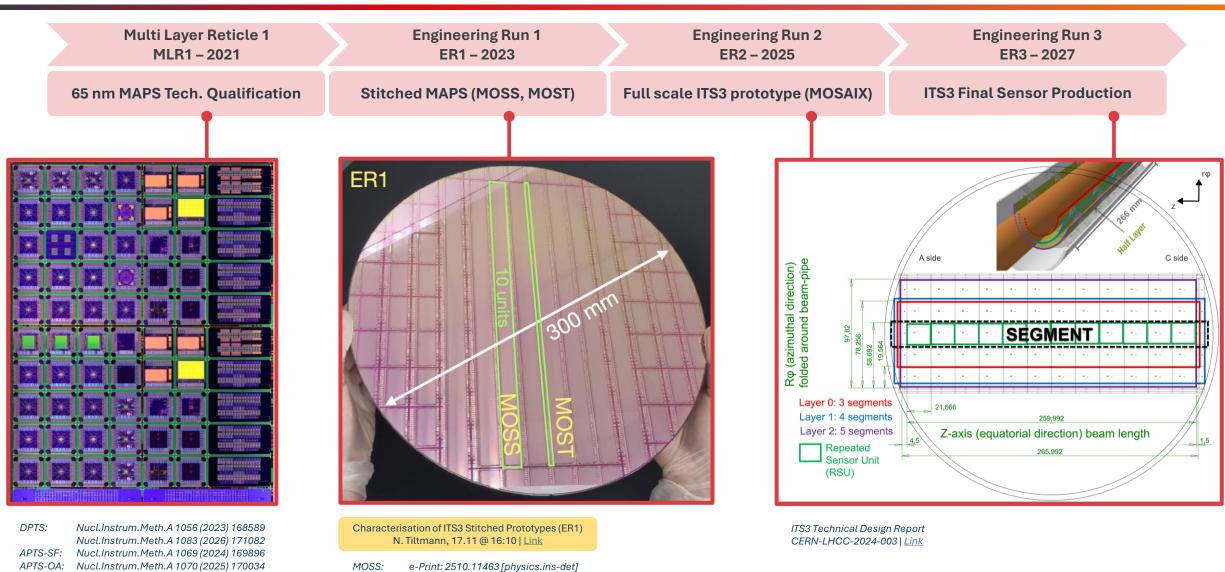
Minimise sensor power: 30 ... 50 mW/cm²

Industrially scalable production (10k modules)

Minimise off-stave supplies and services

SENSOR DEVELOPMENT

ALICE 3 SILICON TRACKER: SENSOR REQUIREMENTS



	ALLOE ITS2	ALICE 3 Sili	con Tracker
	ALICE ITS3	Vertex Detector	Tracker (ML/OT)
Position resolution (µm)	5	2.5	10
Pixel size (µm²)	O(20 x 20)	O(10 x 10)	O(50 x 50)
Time resolution (ns RMS)	O(1000)	100	100
In-pixel hit rate (Hz)	54	94	42 (barrel)
Fake-hit rate (/ pixel / event)	< 10 ⁻⁷	< 10 ⁻⁷	< 10 ⁻⁷
Power consumption (mW/cm²)	35	70	20
Particle hit density (MHz/cm²)	8.5	94	0.6
Non-Ionising Energy Loss (1MeV $n_{\rm eq}$ /cm ²)	3 × 10 ¹²	3 × 10 ¹⁵	6 × 10 ¹³
Total Ionising Dose (Mrad)	0.3	200	3 (barrel)
X/X ₀ per layer	0.09% (average)	0.1%	1.0%

- Some of the parameters span across a wide range: specific optimisiation
- ITS3 sensor development providing preliminary information

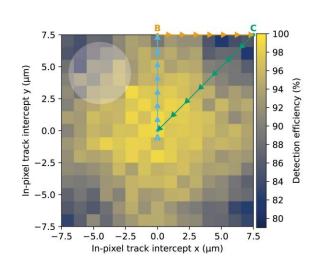
ITS3 Sensor Development Roadmap

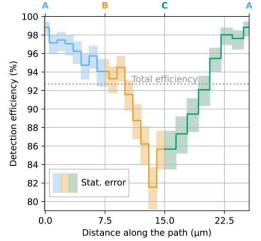
LEARNINGS FROM ITS3 -> ALICE 3 SENSOR R&D

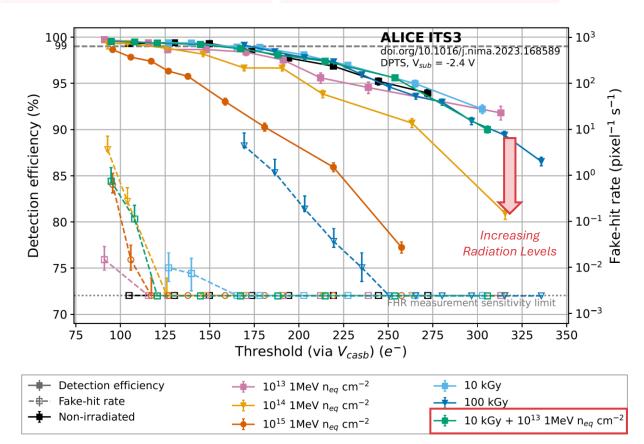
Multi Layer Reticle 1 MLR1 – 2021

Engineering Run FR1 – 2023

ER2 – 2025


ngineering Run 3 ER3 – 2027


Detection Efficiency:


- Fulfils ITS3 requirements at 20°C for 10 kGy + 1 × $10^{13} n_{eq}$ /cm²
- Notable deterioration for higher irradiation at pixel corners

Time Resolution:

• Fast intrinsic charge collection at \approx 70 ps (10 μ m pixel; \sim 3 μ W in-pixel)

Top: Detection efficiency (filled symbols, solid lines) and fake-hit rate (open symbols, dashed lines) as a function of average threshold, measured at various radiation levels with DPTS.

Left: In-pixel detection efficiency for 15 µm pitch DPTS irradiated at 10¹⁵ 1 MeV n/cm².

Figures from: Nucl.Instrum.Meth.A 1056 (2023) 168589.

ITS3 Radiation Level

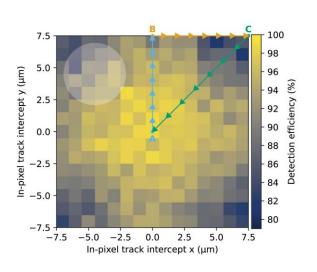
LEARNINGS FROM ITS3 -> ALICE 3 SENSOR R&D

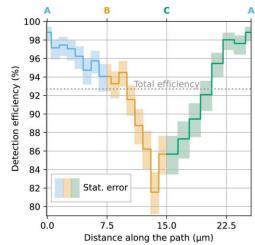
Multi Layer Reticle 1 MLR1 – 2021

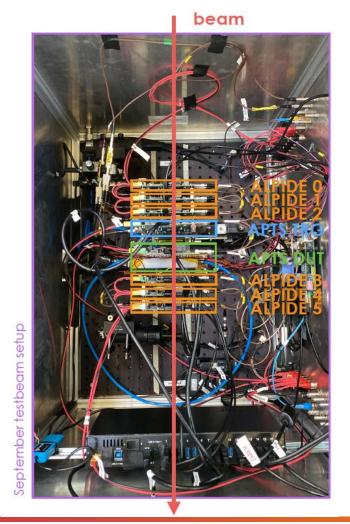
Engineering Run
FR1 – 2023

ngineering Run 2 FR2 – 2025 ngineering Run 3 ER3 – 2027

Detection Efficiency:


- Fulfils ITS3 requirements at 20°C for 10 kGy + 1 × $10^{13} n_{eq}$ /cm²
- Notable deterioration for higher irradiation at pixel corners


Time Resolution:


• Fast intrinsic charge collection at \approx 70 ps (10 μ m pixel; \sim 3 μ W in-pixel)

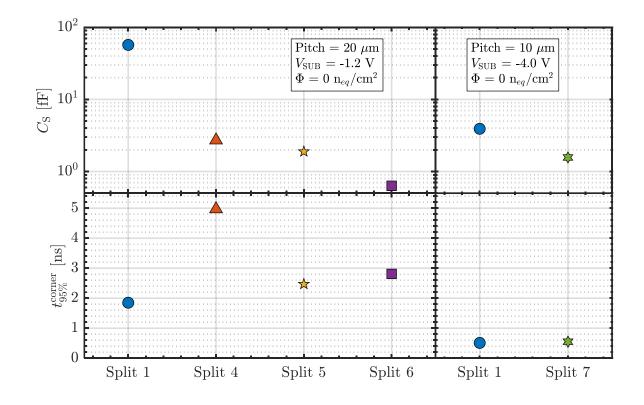
R&D for ALICE 3 Silicon Tracker:

Tests ongoing to recover pixel performance at < 0°C for higher irradiation

Two test-beams at PS (10 GeV mixed protons/pions) to commission the setup with cold box

Learnings From ITS3 → ALICE 3 Sensor R&D

Multi Layer Reticle MLR1 – 2021


Engineering Run ' ER1 – 2023 Engineering Run 2 ER2 – 2025 Engineering Run 3 ER3 – 2027

Potential Prototypes for ALICE 3 Silicon Tracker in ER2 and beyond

VD: 10 μm analogue pixels and optimized splits

ML, OT: Larger pixels (APTS; 30 ... 50 μm)

SPARC: Asynchronous Priority Arbiter for timing

Top: 3D TCAD Simulations showing the variation of sensor capacitance and and charge collection time (95% of total charge) from pixel corner. Figure adapted from: G. Boghello, JINST 20 (2025) 07, C07053. Left: Charge Sharing in Dual Diode Pixel (16 x 32 μm²). Figure from: J. Hensler (Uni. Heidelberg).

LEARNINGS FROM ITS3 -> ALICE 3 SENSOR R&D

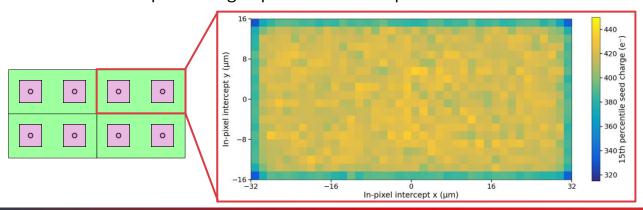
Multi Layer Reticle MLR1 – 2021 ingineering Run ER1 – 2023 Engineering Run 2 ER2 – 2025 Engineering Run 3 ER3 – 2027

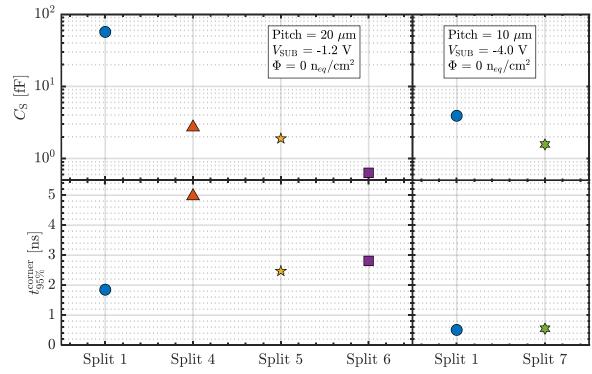
Potential Prototypes for ALICE 3 Silicon Tracker in ER2 and beyond

VD: 10 μm analogue pixels and optimized splits

ML, OT: Larger pixels (APTS; 30 ... 50 μm)

SPARC: Asynchronous Priority Arbiter for timing


Design and Simulations Ongoing

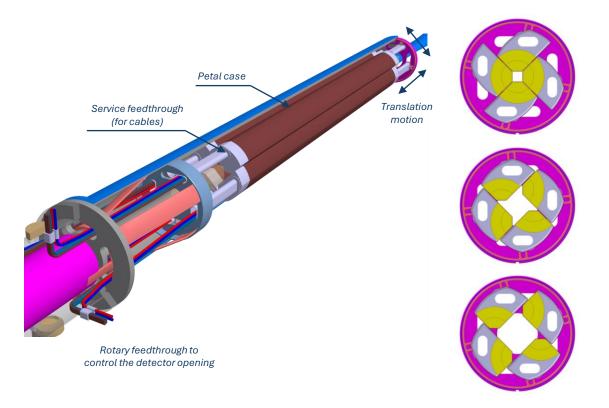

Optimise efficiency and readout speed for a given power budget

Analog front-end: Grouping of neighbouring pixels

Readout architecture: Asynchronous readout

- Modular pixel matrix unit to facilitate construction of large sensors
- Minimise footprint of digtal pixel down to 10 μm

Top: 3D TCAD Simulations showing the variation of sensor capacitance and and charge collection time (95% of total charge) from pixel corner. Figure adapted from: G. Boghello, JINST 20 (2025) 07, C07053. Left: Charge Sharing in Dual Diode Pixel (16 x 32 μm²). Figure from: J. Hensler (Uni. Heidelberg).


Module And Stave DESIGN, MECHANICS AND THERMAL MANAGEMENT

VERTEX DETECTOR: MECHANICS

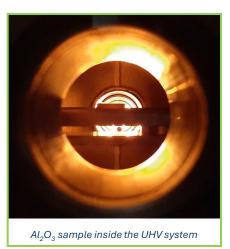
Concept:

- Petals in primary beam vacuum; secondary vacuum inside
- Petals in 0.15 mm thick beryllium case with service feedthrough
- Petals opening ($r_0 \approx 15$ mm) and closing ($r_0 \approx 5$ mm) based on their translations driven by rotary motor device and feedthrough

VERTEX DETECTOR: MECHANICS

Concept:

- Petals in primary beam vacuum; secondary vacuum inside
- Petals in 0.15 mm thick beryllium case with service feedthrough
- Petals opening ($r_0 \approx 15$ mm) and closing ($r_0 \approx 5$ mm) based on their translations driven by rotary motor device and feedthrough


Petal case Service feedthrough motion (for cables) Rotary feedthrough to control the detector opening Full scale petal prototype (0.3 mm aluminium Al 5083)

Prototyping and Testing

- Full scale prototypes produced in aluminium (0.3 mm thick)
- Ongoing tests to characterise materials in $\approx 5 \times 10^{-10}$ mbar double-vacuum setup (observing outgassing and mass loss)
- Upgrades ongoing to test larger-scale prototypes

Vertex Detector: Thermal Management

Concept:

- Cold plate located outside the L2 sensors
- Evaporative CO₂ cooling to maximise volumetric heat transfer
- Carbon foams and foils provide thermal contact between cold plate, detection layers (70 mW/cm²) and petal case
- Beam-induced power (100 mW/cm²) cooled via the petal case

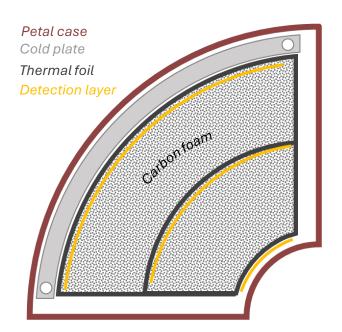
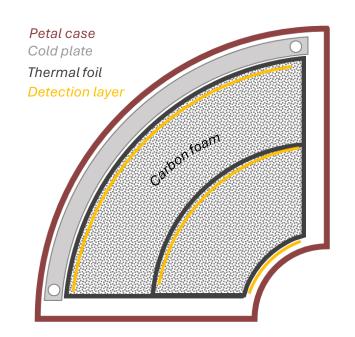


Figure from: C. Gargiulo, Forum on Tracking Detector Mechanics (2024).

Vertex Detector: Thermal Management



Concept:

- Cold plate located outside the L2 sensors
- Evaporative CO₂ cooling to maximise volumetric heat transfer
- Carbon foams and foils provide thermal contact between cold plate, detection layers (70 mW/cm²) and petal case
- Beam-induced power (100 mW/cm²) cooled via the petal case

Computational Fluid Dynamics Simulations:

- Max. sensor temperature < -25°C, with -35°C inlet
- Uniform temperature gradient over a sensor (1-2°C)

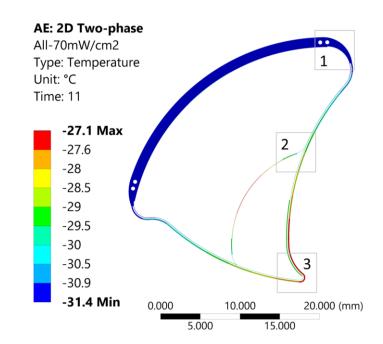
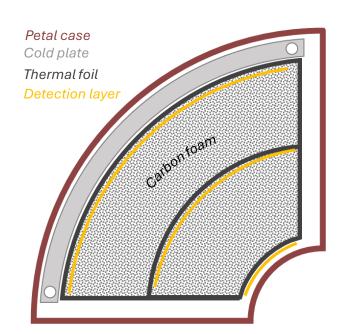


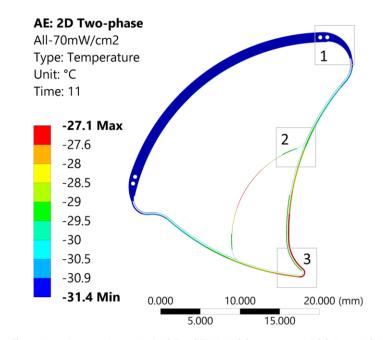
Figure from: Letter of Intent for ALICE 3, CERN-LHCC-2022-009, LHCC-I-038 | Link.

Vertex Detector: Thermal Management

Concept:

- Cold plate located outside the L2 sensors
- Evaporative CO₂ cooling to maximise volumetric heat transfer
- Carbon foams and foils provide thermal contact between cold plate, detection layers (70 mW/cm²) and petal case
- Beam-induced power (100 mW/cm²) cooled via the petal case



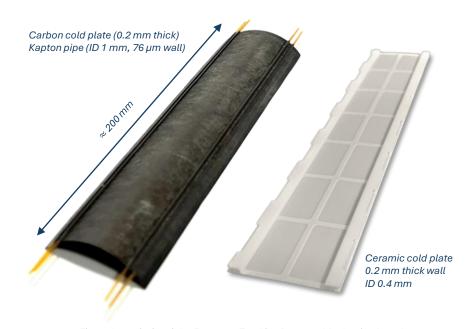

Figure from: C. Gargiulo, Forum on Tracking Detector Mechanics (2024).

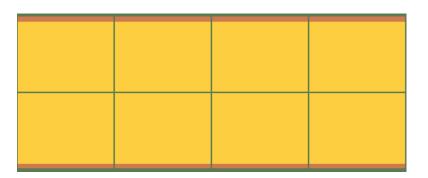
Computational Fluid Dynamics Simulations:

- Max. sensor temperature < -25°C, with -35°C inlet
- Uniform temperature gradient over a sensor (1-2°C)

Prototyping and Testing

- Carbon cold plate with Kapton pipes (exp. burst pressure 150 bar)
- 3D printed ceramic plate with engraved cooling channels




Figure from: C. Gargiulo, Forum on Tracking Detector Mechanics (2024).

MIDDLE LAYERS & OUTER TRACKER: MODULE DESIGN

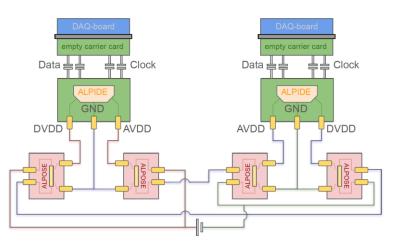
Concept:

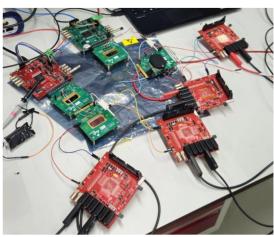
- Module comprising 2×4 sensors ($\approx 13 \times 5$ cm²)
- Facilitate industrial production (60 m²; 10k modules)
- Material minimization with aluminium FPCs and serial powering

Sensor Width = 25 mm Sensor Length = 32 mm Periphery Width = 1.5 mm Module Width = 128.8 mm Module Length = 52.2 mm Inter-Sensor Gap = 0.2 mm Sensor-FPC Gap = 0.1 mm (short-edge) Sensor-FPC Gap = 1 mm (long-edge)

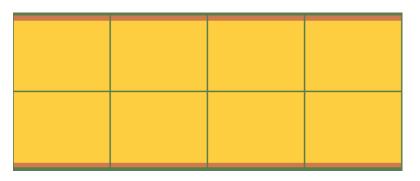
MIDDLE LAYERS & OUTER TRACKER: MODULE DESIGN

Concept:

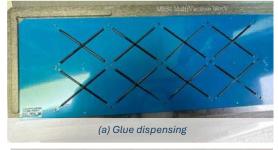

- Module comprising 2 × 4 sensors (≈ 13 × 5 cm²)
- Facilitate industrial production (60 m²; 10k modules)
- Material minimization with aluminium FPCs and serial powering


Prototyping and Testing

- Serial powering demonstration of ALPIDEs with ALPOSE
- Module assembly demonstration with dummy components


MEMPACK (KR): multi-purpose machine

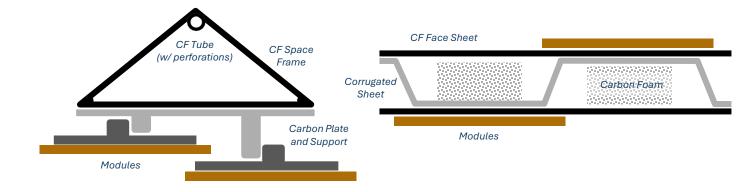
C-ON tech (KR): customized assembly machine


Serial powering qualification schematic (left) and setup (right) with ALPIDE and ALPOSE.

Sensor Width = 25 mm Sensor Length = 32 mm Periphery Width = 1.5 mm

Module Width = 128.8 mm Module Length = 52.2 mm Inter-Sensor Gap = 0.2 mm

Sensor-FPC Gap = 0.1 mm (short-edge) Sensor-FPC Gap = 1 mm (long-edge)

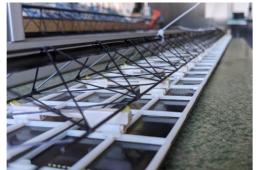

Module assembly procedure with dummy components by using MEMPACK multi-purpose machine die bonder.

MIDDLE LAYERS & OUTER TRACKER: MECHANICS

Concept:

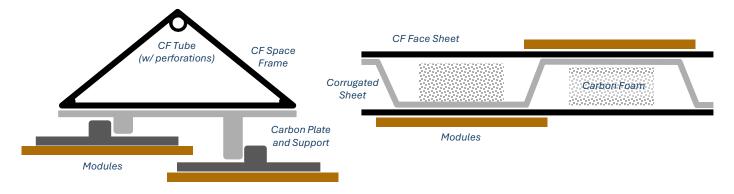
- Large-area, lightweight CF support structures (< $1\% X/X_0$)
- Air cooling elements integrated into support structures
- Barrel Layers: Space-frame (à la ITS2 and CBM-STS)
- Disk Layers: Corrugated structures (à la ePIC-SVT)

MIDDLE LAYERS & OUTER TRACKER: MECHANICS

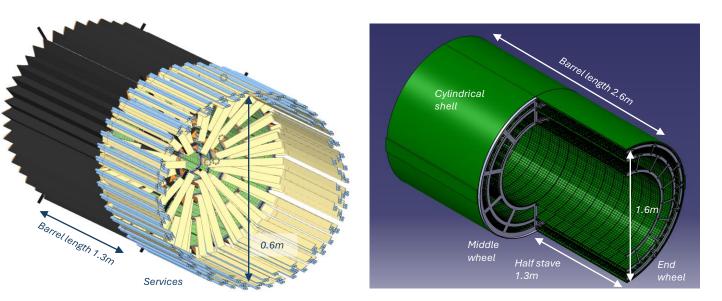


Concept:

- Large-area, lightweight CF support structures (< 1% X/X₀)
- Air cooling elements integrated into support structures
- Barrel Layers: Space-frame (à la ITS2 and CBM-STS)
- Disk Layers: Corrugated structures (à la ePIC-SVT)

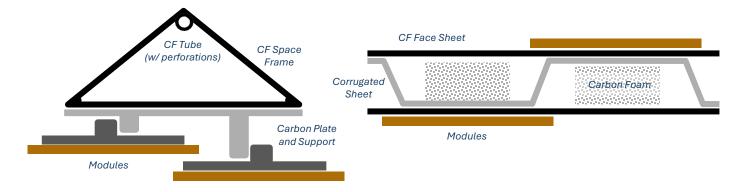

Prototyping and Testing

- Stave assembly procedures under development
- Stave metrology with load
- Detector integration and installation being studied
- CAD drawings finalization (incl. service routing)



Mechanical prototypes to test the stave assembly procedures for barrel (left) and disks (right).

Cross-sectional illustration of the stave assembly and cooling principle of barrel (left) and disk layers (right).


CAD drawings of the middle (left) and the outer tracker barrels (right).

MIDDLE LAYERS & OUTER TRACKER: THERMAL MANAGEMENT

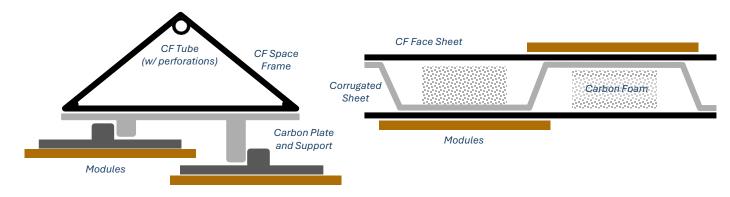
Concept:

- Air cooling elements integrated into support structures
- Barrel Layers: Perforated CF tube integrated into the CF space frame for impinging air jets on module surface
- Disk Layers: CF corrugated structures with internal air channels with carbon foam for turbulence

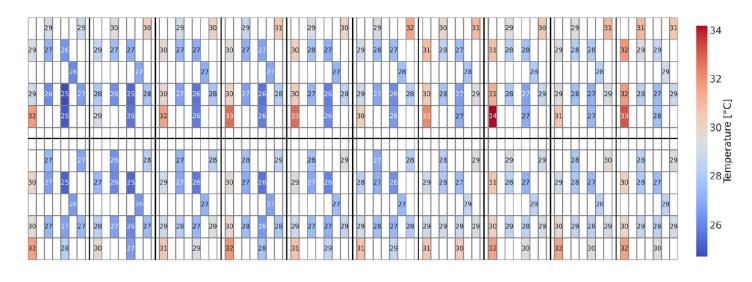
Cross-sectional illustration of the stave assembly and cooling principle of barrel (left) and disk layers (right).

MIDDLE LAYERS & OUTER TRACKER: THERMAL MANAGEMENT

Concept:


- Air cooling elements integrated into support structures
- Barrel Layers: Perforated CF tube integrated into the CF space frame for impinging air jets on module surface
- Disk Layers: CF corrugated structures with internal air channels with carbon foam for turbulence

Prototyping and Testing


- Tests with realistic thermal prototypes
- Max. sensor temp. < 35°C for nominal power dissipation

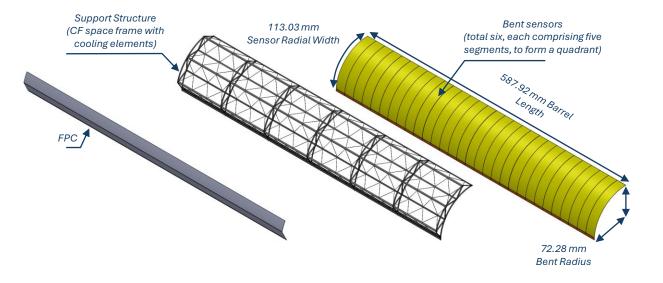
Realistic thermal dummies for cooling tests produced for barrels (left; silicon) and disks (right; FPC), with dedicated regions for matrix and peripheral power dissipation.

Cross-sectional illustration of the stave assembly and cooling principle of barrel (left) and disk layers (right).

Measured temperature distribution over a half-stave (1.3 meter long) for nominal operation conditions. $P_{matrix} = 30 \text{ mW/cm}^2$, $\dot{V} = 20 \text{ l/min}$, $T_{inlet} = 16 ^{\circ}\text{C}$

MIDDLE BARREL LAYERS: LIGHTWEIGHT VERSIONS

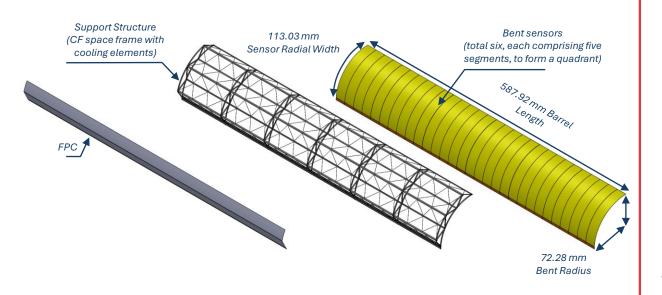
Feasibility studies towards lightweight middle layers barrels, offering significant improvement in track reconstruction parameters


MIDDLE BARREL LAYERS: LIGHTWEIGHT VERSIONS

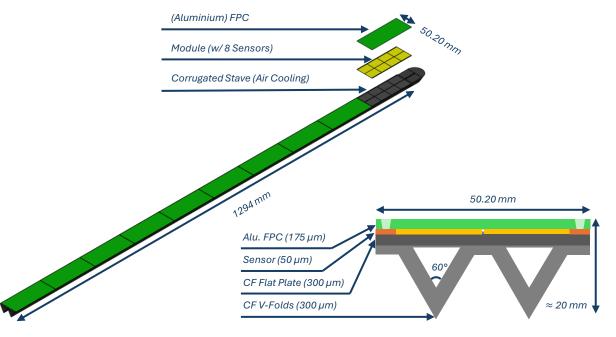
Feasibility studies towards lightweight middle layers barrels, offering significant improvement in track reconstruction parameters

Bent middle layer version Avg. material budget of < 0.25% X/X₀ per layer

- Sensor Design: MOSAIX-like 5 segments x 5 RSUs; LECs along the z-axis
- Stave and Integration Design: Bent sensors glued onto light CF supports
- Thermal Management: Bi-phase CO₂ (LEC) + impinging air jets (RSU)
- Sensor-level (inter-segment) data aggregation and serial powering


MIDDLE BARREL LAYERS: LIGHTWEIGHT VERSIONS

Feasibility studies towards lightweight middle layers barrels, offering significant improvement in track reconstruction parameters


Bent middle layer version Avg. material budget of < 0.25% X/X₀ per layer

- Sensor Design: MOSAIX-like 5 segments x 5 RSUs; LECs along the z-axis
- Stave and Integration Design: Bent sensors glued onto light CF supports
- Thermal Management: Bi-phase CO₂ (LEC) + impinging air jets (RSU)
- Sensor-level (inter-segment) data aggregation and serial powering

Planar middle layer version Avg. material budget of < 0.45% X/X₀ per layer

- Sensor Design: Single-reticle sensor (32 x 25 mm²; 1.5 mm periphery)
- Module Design: Sensors arranged in 4x2 layout with aluminium FPCs
- Thermal Management: Air-cooled CF staves; cooling ≈ 60 mW/cm²
- Readout and Powering: Off-stave lpGBT and VTRx+, and serial powering

SUMMARY AND OUTOOK

ALICE 3 Silicon Tracker, with its unique detector concept, pushes the limits of MAPS technology and large-area integration methods, and has a very aggressive R&D program to ramp up towards TDRs in 2026 for eventual data taking in Run 5!

Targets pointing resolution of 10 μ m at p_T = 200 MeV/c at midrapidity

 $\sqrt{\text{compact:}}$ 11 barrel layers (0.5 ≤ r ≤ 80 cm) and 2 x 12 disks (|z| ≤ 350 cm)

 $\sqrt{\text{large area:}}$ ≈ 60 m² spanning $|\eta| \le 4$

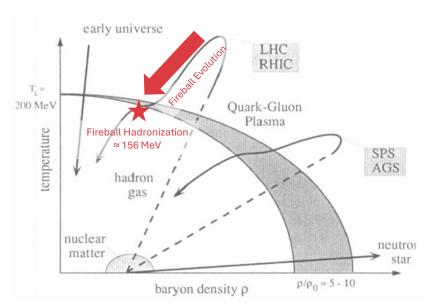
✓ lightweight: $\approx 0.1 \% X/X_0$ per layer for the Vertex Detector (in-vacuum)

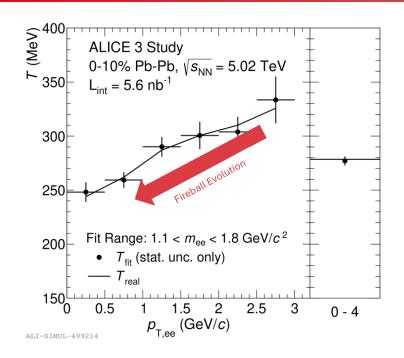
 \approx 10 % X/X_0 for all Silicon Tracker layers

- √ housed in 2T solenoidal magnet
- R&D will build upon ALICE ITS3 experience, where wafer-scale MAPS based on the TPSCo 65 nm process have been qualified

- Challenges and opportunities
 - √ improve radiation hardness and rate capabilities
 - √ achieve smaller pixel pitches and spatial resolution
 - ✓ retractable mechanics and operation in beam pipe
 - √ reduce power consumption
 - √ industrial and automatized module assembly methods
- Developments are of broad interest for next-gen upgrades and experiments

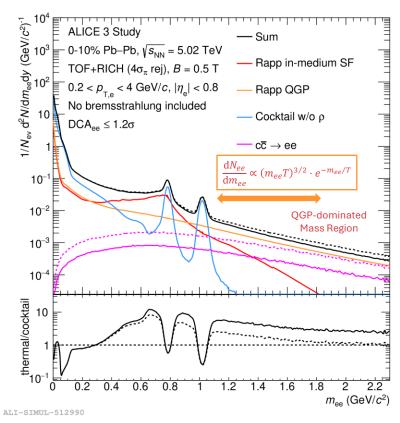
	2023	2024	2025	20:	26	6 2027		2028		202	9	2030		2031	20	032	2033	20	34	2035
	Run 3				L			LS	.S3				Run 4				LS4			
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q	1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	4 Q1 Q2 (Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q	Q4 Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4 Q1	Q2 Q3 Q4
ALICE 3	Detector scoping, WGs kick-off	scoping, Selection of technologies, R&D concept prototypes				R&D, TDRs, engineered prototypes				Construction						Contingency and re-commissioning		Installation and Commissioning		
Inner Tracker	Design, R&D Pro		ototypin	g	T D Prototyping R			E D R	Pre		P R R	Production		Integ	tegration Contingency			surface nissioning	Installation	
Outer Tracker	Design, R&D t				Protot	typing	1 1 1	re- uction	P R R				Produc	tion			Contingency	Inte- gration	Commi- ssioning	Installation

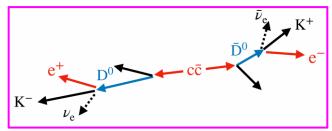

THANK YOU



EXTRA SLIDES

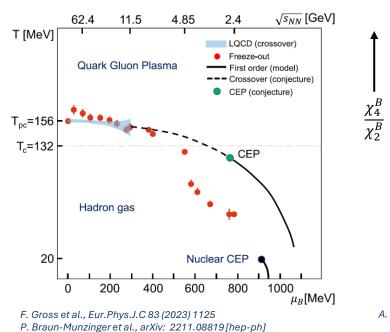
MOTIVATION FOR LIGHTWEIGHT SILICON TRACKER

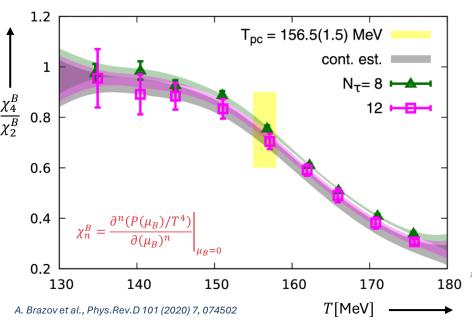


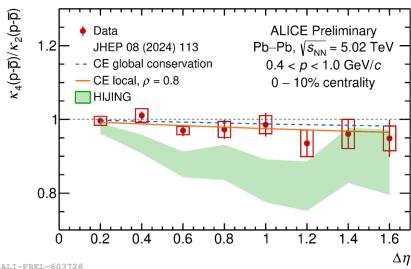


H.R. Schmidt, J. Schukraft, J.Phys.G 19 (1993) 1705-1796 [ALICE], Eur.Phys.J.C 84 (2024) 8, 813 F. Gross et al., Eur.Phys.J.C 83 (2023) 1125

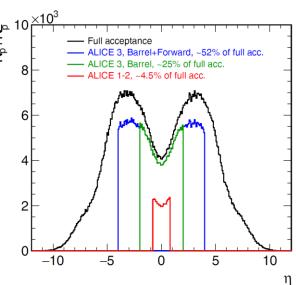
- Current experimental info about fireball temp. at LHC energies (Pb-Pb) is at hadronization ($T_{chem} \approx 156 \text{ MeV}$)
- Source temperature can be extracted from the inverse slope of dilepton excess spectra
- Semi-leptonic heavy-flavour hadronic decays $(c/b \xrightarrow{W^{\pm}} e^{+/-}X)$ dominate the di-electron spectrum (B.R. ~ 10%)
- Unfold spectra through characteristic weak-decay topologies of heavy-flavour hadrons (DCA_{ee} separation between prompt and non-prompt di-electrons; $c\tau \sim 100 \ \mu m$)


Low-material ALICE 3 tracker is crucial for achieving \approx 10 μ m pointing resolution, enabling identification of non-prompt heavy-flavour decays (background) and di-electron excess yield (temp.) with p_T (evolution time)





MOTIVATION FOR LARGE-ACCEPTANCE SILICON TRACKER


- At LHC energies ($\mu_{\rm B} \approx 0$), current info about partonic phase transition is only available from IQCD
- Varying correlation length in vicinity to phase transition

Massless Quarks: 2^{nd} -order ($T_c \approx 132 \text{ MeV}$) Finite Quark Masses: Cross-over (T_{nc} ≈ 156 MeV)

Susceptibilities (χ_4^B/χ_2^B) IQCD: Cumulants (κ_4/κ_2) **Experiments:**

Sensitivity to phase transition, i.e., deviation from the Poissonian baseline, is highly dependent on detector acceptance (for ALICE 1-2 setup, $|\eta| \le 0.8$, or $\Delta \eta \le 1.6$)

Large acceptance ($\Delta \eta$) of ALICE 3 tracker would enable mapping the higher-order fluctuations of conserved charges (related to susceptibilities in IQCD), thereby characterizing the nature of hadron-to-parton phase transition at the LHC

