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Introduction

Space ExplorationNuclear Reactor Remote Control

Applications

HEP Experiments

Three common radiation hardening approaches are as below. Current States

Conditions & Parameters Approach-A😔 Approach-B😊 Approach-C😊

Shielding with Lead❓ YES NO YES

Radiation Tolerant Sensor❓ NO YES YES

Weight Very Heavy (~20kg) 😔 Light (<5kg) 😊 Not Heavy (5-10kg)

Radiation Tolerance Low 😔 High 😊 Even Higher 😊

Lifetime Short 😔 Long 😊 Long 😊

Radiation-tolerant cameras are demanding for imaging and monitoring Systems.



Introduction

CMOS Image Sensor

Block diagram of the CMOS Image Sensor

Photodiodes Readout Integrated Circuit(ROIC)

Two radiation-vulnerable critical blocks:

►Photodiode: Incident light converted into charge signals

►ROIC: transistors for amplification, digitization ···



Radiation Effects on the Image Sensor

Total Ionizing Dose (TID) Effect on Photodiodes and Transistors

Ref: James R. Schwank, et al. Radiation Effects in MOS Oxides. Ref: V. Goiffon, et al. Generic Radiation Hardened Photodiode 

Layouts for Deep Submicron CMOS Image Sensor Processes.

Ref: Federico Faccio and Giovanni Cervelli. 

Radiation-Induced Edge Effects in Deep Submicron CMOS Transistors.

Pre-irradiation High TID

For photodiodes:

Dark current increase, Depletion region extension

For transistors:

Threshold voltage shift, Leakage current increase

Summary

►STI is a big trouble for both photodiodes and transistors

►What about gate oxide?

Oxide-trapped charge

Interface states



Radiation-Hardened-By-Design (RHBD)

Total Ionizing Dose (TID) Effect

Layout techniques to enhance the radiation tolerance of MOS transistors

► mitigate the TID effect on STI

► but can not totally eliminate the TID effect on gate oxide

► ELT is very tolerant to ionizing radiation （~ 100Mrad）

► Gate oxide is much more tolerant to ionizing radiation

Ref: Federico Faccio and Giovanni Cervelli. 

Radiation-Induced Edge Effects in Deep Submicron CMOS Transistors.

Ref: Radiation Effects on Embedded Systems.

180nm process STI Gate Oxide

depth / nm ~ 400 ~ 4

Comparison of STI oxide and gate oxide

Radiation-Hardening Strategy



Prototype Designs 

Read Out Integrated Circuit (ROIC)

► All analog circuits (and critical digital circuits) designed 

with enclosed layout transistors.

► P+ and N+ guardrings implemented to decrease latch-

up possibility.

► Outer diffusion of adjacent NMOS transistors 

connected to the same node or isolated by P+ rings to 

cut the leakage path between transistors.

inner diffusion outer diffusion

Implemented Enclosed Layout Transistor

D Flip-Flop Layout with ELT

For radiation-hardened photodiodes, please follow 

the presentation of J. Deng on Tuesday morning.



Prototype Specifications 

Timeline of the Image Sensor 

MPW1: To study the RHBD strategy.

MPW2:To validate the read out chain.

Features: 

· 256×128 Pixel Array

· Column-parallel ADC

· LVDS interface

Features: 

· 64×64 Pixel Array

· RH / STD Photodiodes

· RH / STD ADC

Camera Prototype II

Camera Prototype I

Sensor Prototype I

To characterize TID performance

Sensor Prototype II 

—— higher performance

· Photodiode optimization (geometry ···)

· ROIC performance improvement (power, noise ···)

· Triple modular redundancy (Single Event Effect)

Features: 

· 1280×720 Pixel Array

· 1 Gbps data rate

· 100Mrad-level radiation tolerance

Today’s topic!



Prototype Specifications 

Overall Architecture
Active Pixel

Analog Front End Electronics

▸ 10 μm pixel size, 1288 × 728 pixel array

▸ Sensing Photodiode + 3 transistors

▸ Double sampling —— low noise

▸Amplifier buffer —— low noise

Serializer with LVDS Interface

Analog/Digital Interface

▸ Digital codes (0/1) are more robust compared to analog signals

▸ 10bits digital quantization —— humans can tell 200-400 gray levels

▸ Column parallel Wilkinson ADCs are popular due to the simplicity, area 

and power efficiency

▸ Formatted pixel data

▸ Data transmission with phase lock loop

Data packing



Prototype Designs 

In-pixel Electronics

►3-T Active Pixel Sensor

Photodiode + 3 transistors in 10×10 μm2

M1 and M3 work as switches, M2 is used to drive 

the large load capacitance of the column bus

M1

M2

M3

►In reset phase, the reset transistor is on to charge the 

photodiode to a high level (reset level).

►In integration phase, the reset transistor is off and 

photodiode discharges due to leakage current or 

photon-generated electron-hole pairs.

Working principle of the pixel

Simplified diagram of one column pixels



Prototype Designs 

Read Out Scheme

Time Sequence of readout scheme

Block diagram of the readout chain

►Scheme:

→ photodiodes for photon-electron conversion

→ pixels readout row by row 

→ voltages sampled and digitized  

→ digitized outputs formatted and transmitted

A/D 

conversion



Measurements Results

Functionalities 

Pixel

Sample

Comparator

Out

PLL

500 MHz



Measurements Results

A/D Conversion —— Noise

Methods: Study digital outputs distribution with a fixed input voltage

μ = 485.61 LSB

σ = 0.50 LSB

► Only 3 digital codes obtained

► Noise of ADC calculated to be 0.50 LSB

► Uniform Noise behaviors of 1288-channel ADCs

► Acceptable conversion noise for the image sensor



Measurements Results

A/D Conversion —— Column Offset Correction

►The results indicates the Monte Carlo nonuniformity of column-level ADCs.

►From the distribution, the DC offset can be corrected with digital algorithm

Methods: 1. Measure (1288) mean digital values with a fixed input voltage

2. Calibrate DC offset of 1288 ADCs to get good uniformity



Measurements Results

A/D Conversion —— Histogram and Nonlinearity

Histogram of codes

Methods: Measure digital outputs with a ramp wave for enough time

Calculate nonlinearity from digital codes histogram

INL

Vertical deviation

DNL

Lateral deviation

Non-Linearity diagram
►Differential Non-Linearity (DNL)

DNL indicates the analog difference relative to the ideal situation

►Integral Non-Linearity (INL)

INL is the difference between the actual and the ideal digital output

►Histogram measurement

Ideally, the histogram distribution should be completely flat. 

Actually, the histogram counts deviate from the average value.
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Measurements Results

A/D Conversion —— Nonlinearity

►The Differential Non-Linearity is relatively small and negligible

►The Integral Non-Linearity is a little high but it is acceptable for the imaging syetem



Measurements Results

Pixel Array —— Dark Current

► Strong non-uniformity in rows (0-20, 720-727) —— matrix edge, but not fully understood

► Vertical stripes dominated by the column readout chain (can be calibrated)

Reset level of pixel matrix 10ms dark current integration

Under test!



Measurements Results

A/D Conversion —— irradiation

► The results are from another ADC chip with similar design

► DNL rises from +0.20/-0.18 LSB → +0.50/-0.34 LSB

► INL changes from +1.66/-0.38 LSB → +3.63/-1.25 LSB

500 krad

+1.66 / -0.38 LSB

1000 krad

+2.52 / -0.69 LSB

5000 krad

+3.63 / -1.25 LSB

DNL

INL



Summary & Outlook

►Pixel matrix information obtained with integrated read out chain

---have to further understand the non-uniformity before imaging

►On-chip ADCs evaluated

--- DNL:  ＋0.12/-0.13 LSB

--- INL: +0.61/-3.21 LSB (acceptable for the imaging system)

--- Noise: 0.45 LSB 

--- TID: deterioration of DNL and INL

Summary

Outlook

►Sensor characterization to be continued

►Irradiation (up to 100 Mrad) and annealing tests to be performed
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Backup

Photodiodes

Simplified Pixel layout diagram

(Inspired by V. Goiffon(ISAE-SUPAERO Group))

►Gate Oxide replaces STI

►P+ to further prevent depletion region extension to STI

►In lateral case, pixels are isolated by P+ instead of STI

►In vertical case, pixels are isolated by P+ → STI → P+

For detailed information, please follow the presentation of 

J. Deng on Tuesday morning.

Lateral cross section Vertical cross section



Backup

Aims and Requirements

Technology 180 nm CIS

Pixel Size 10 × 10 μm2

Number of Pixels 1280 × 720

Chip Dimensions 14.7 × 11.6 mm2

Read Out Mode Row-wise

Exposure Time Tunable

Frame Rate > 60 FPS

ADC Resolution ≥ 10 bits

Data Rate ≥ 1 Gbps

Radiation Tolerance

100 Mrad(SiO2)

1012 neq/cm2



Backup

CMOS Image Sensor

Block diagram of the CMOS Image Sensor

►Photodiodes (Light Detection)

Convert incident light into charge signals

Each pixel includes reset & select control

►Analog Front-End (Signal Conditioning)

Source follower drive the load

Unity gain buffer escape coupling from ADC

►A/D Interface (Single-Slope Conversion)

Comparator detects crossing with ramp signal

Latch and counter generate digital outputs

►Bias & Ramp Generator

Provides bias current and reference ramp for ADCs

►Transmission (High-Speed Output)

Data encoding and multiplexing for multiple channels

Serializer and PLL enable high-speed data interface

Photodiodes Readout Integrated Circuit(ROIC)



Backup

Pixel Array —— Photon Incidents

►Pictures obtained with a 520nm Light from Xenon lamp

►Overall behaviors are similar to the dark current case, but with higher current

Reset level of pixel matrix 10ms photon incidents current integration
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