

The CMS Phase-2 Tracker Upgrade: Meeting the Challenges of the HL-LHC

<u>Amrutha Samalan</u>¹ on behalf of the CMS Collaboration 1. Paul Scherrer Institute (PSI), Switzerland

The 14th international "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors (HSTD 14)

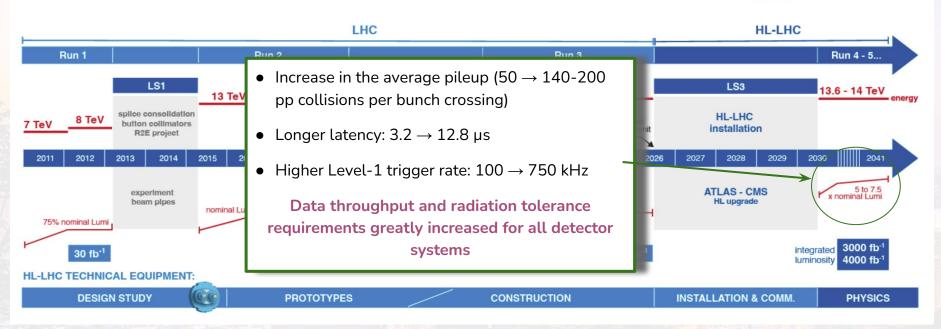
Nov 16 – 21, 2025- Academia Sinica

Overview

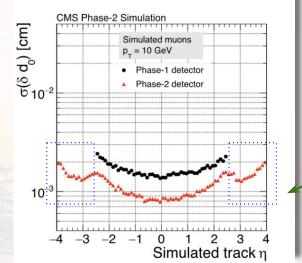
- Introduction to HL-LHC
- CMS Phase-2 Tracker Upgrade
- Outer Tracker Upgrade
 - Outer Tracker Layout and Modules
 - Module Production Status
 - Module Quality Control Tests
 - Latest Irradiation Test Results
 - Status of integration Tests
- Inner Tracker Upgrade
 - Inner Tracker Layout and Modules
 - Module Production Status
 - Module Quality Control Tests
 - Latest Irradiation Test Results
 - Status of integration Tests

Phase-1 tracker installation at CMS

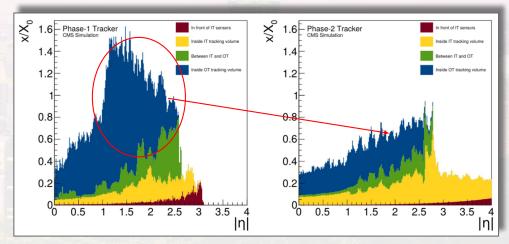
Introduction



LHC / HL-LHC Plan


The current CMS Tracker will be replaced with an upgraded system

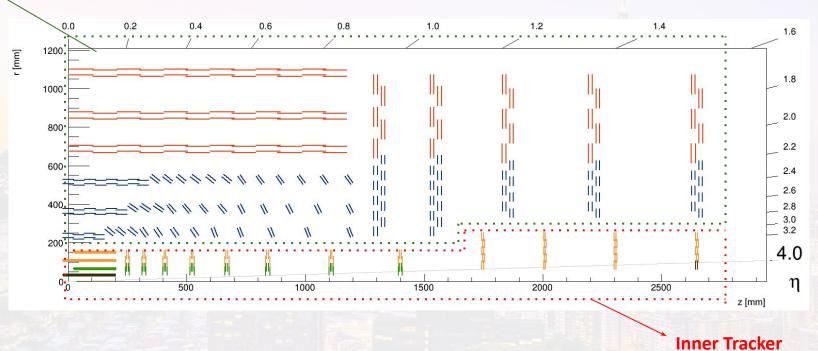
CMS Phase-2 Tracker Upgrade



Tracking performance in Phase-2 Tracker

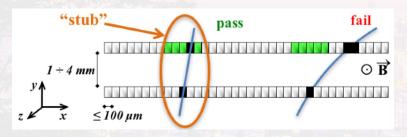
Significant reduction in material budget in the Outer Tracker region compared to the Phase-1 Tracker

- Capable to deal with hit, track and data rates expected for **7.5 x 10³⁴ cm⁻²s⁻¹**
- Increased radiation-tolerance up to 1 Grad (fluence of $\sim 2 \times 10^{16}$ neq/cm² in the innermost regions-about an order of magnitude above Phase-1)
- Increased granularity ensures efficient reconstruction under extreme pile-up conditions
- Impact parameter resolution improves by about a factor of two compared to Phase-1.
 - Tracking extended from $|\eta| \sim 2.5$ to $|\eta| \sim 4$

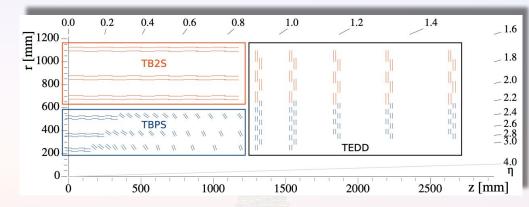

CMS Phase-2 Tracker Upgrade

Outer Tracker

Outer Tracker Upgrade



New


OT will send tracking information to the CMS Level 1 trigger to control the data rates

- Two module types (pT modules):
 Pixel-Strip (PS) and Strip-Strip (2S)
- Each module correlates hits from two closely spaced sensors to form "stubs": tracks with pT > 2
 GeV

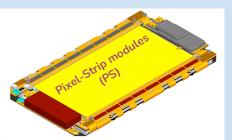
pT Module Concept

All pT-modules (TBPS, TB2S, TEDD) provide input to the Level-1 trigger at 40 MHz

- Tracker Barrel with 2S modules (TB2S)
- Tracker Barrel with PS modules (TBPS)
- Tracker Endcap Double Discs (TEDD)


Module type and variant		TBPS	TB2S	TEDD	Total per variant	Total per type	
2S	1.8 mm	0	4464	2792	7256	7680	
	4.0 mm	0	0	424	424		
PS	1.6 mm	826	0	0	826		
	2.6 mm	1462	0	0	1462	5616	
	4.0 mm	584	0	2744	3328		
Total		2872	4464	5960	13296		

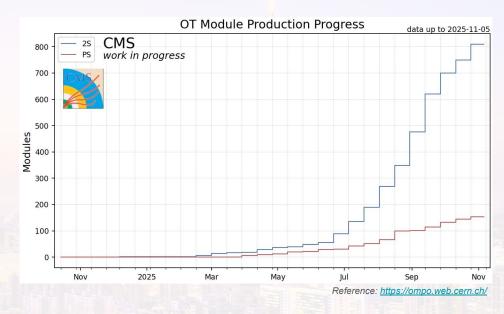
Outer Tracker Modules



- **2 different spacings:** 1.8 & 4 mm
- 2 micro strip sensors with 5 cm
 x 90 um strips
- Sensor dimension: 10cm x 10 cm: two columns of 1016 strips

- 3 different spacing: 1.6mm & 2.6mm & 4mm
- Strip sensor (2.5cm x 100μm strips) + Macro Pixel sensor (1.5 mm x 100 μm pixels)
- Sensor dimension 5cm x 10 cm (two column of 960 strips + 32x960 pixels)

Outer Tracker Module Production



Module Production Overview

- PS modules: Production at 5 centers across
 Europe and the US
 Bari and Perugia (Italy); DESY (Germany); Brown and Purdue (USA)
- 2S modules: Production at 7 centers across Europe, US, India, and Pakistan (RWTH Aachen, KIT (Germany); UCLouvain/VUB (Belgium); Brown, Purdue (USA); NISER (India); NCP (Pakistan)

Production Strategy

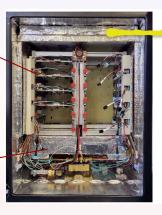
- Transition from sequential (pipeline) assembly
 → to parallelized module assembly
- Production rates increasing as lines mature
- 2S production scaled up in June; PS throughput currently limited by Front-End Hybrids (FEHs) availability

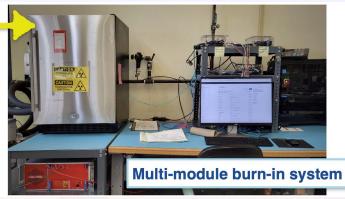
Coordinated monitoring of module production, QC results, an component flow between all assembly centres

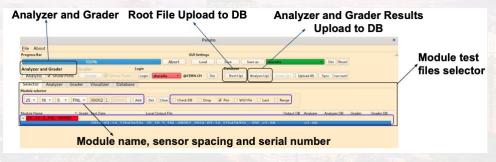
Outer Tracker Module Quality Control

Module QC Tests

Modules


- Sensor I–V tests before and after assembly
- Sensor alignment and configuration checks
- Wire bond pull tests and visual inspection
- Noise and functionality tests


Module Burn-in & Qualification

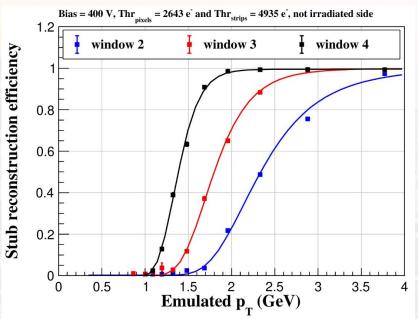

Burn-in Test Setup

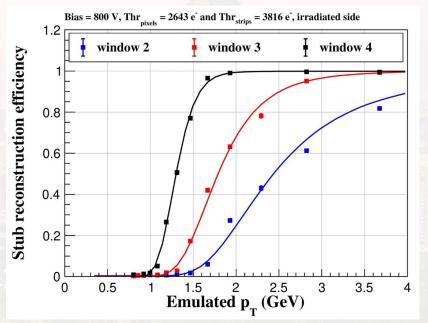
- 48 h thermal cycling between +20 °C and -35 °C
- Electrical tests repeated at 5 points during the cycle

Results handling: automated frameworks for analysis, grading, and database uploads are fully implemented.

POTATO(Phase-2 Outer Tracker Analyzer of Test Outputs)

Outer Tracker Irradiation Studies





2024 Fermilab Test Beam

- PS module with 1.6 mm sensor-hybrid spacing was evaluated.
- Tested before and after irradiation to a fluence slightly above HL-LHC end-of-life levels.
- No significant performance degradation observed after irradiation.
- Indicates stable operation margin for HL-LHC conditions.

Outer Tracker Integration - System Tests

Integration Centers: Modules assembled into test ladders / planks / rings /

DEEs for validation —> Results stable

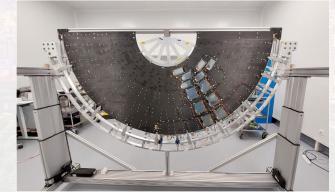
2S Ladders (TB2S, prototype):

Mechanical & thermal integrity validated on test ladders; Electrical performance consistent with single-module results across temperatures.

PS Ring and Plank (TBPS):

Noise tested at room and cold;
Ground connection scheme under evaluation.

TBPS Plank



TB2S Ladder

TEDD Sector Prototype:

Module mounting, service routing, and tooling successfully demonstrated:

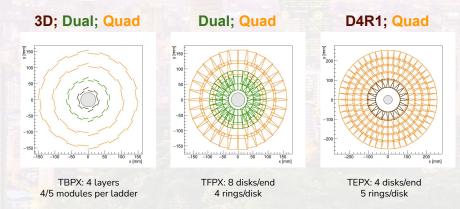
No significant noise increase after module installation.

TEDD DEE

Inner Tracker Upgrade

Tracker Barrel PiXel (TBPX)

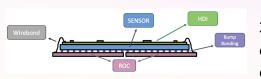
- 4 layers
- 756 modules
- Innermost layer->3D modules (108 modules)


Tracker Forward PiXel (TFPX)

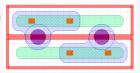
- 8 small double-disks on each side
- 1728 modules

Tracker Endcap PiXel (TEPX)

- 4 large double-disks on each side
- 1408 modules
- Will be used for tracking and luminosity measurements
- Ring 1 of Disk 4->Fully used for luminosity measurements only



Inner Tracker Modules



Planar sensors: $25 \times 100 \ \mu m^2$ pixels and 150 μm thick

3D sensors: $25\times100~\mu\text{m}^2$ pixels, $150~\mu\text{m}$ thick, n⁺ readout columns (5–8 μm diameter, $115–130~\mu\text{m}$ length), enhanced radiation tolerance and lower depletion voltage

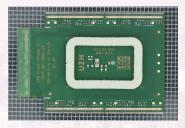
 $100 \times 25 \, \mu m^2$



CROC readout chip (CMOS 65 nm, RD53): $50 \times 50 \mu m^2$ pixels, 3.2 GHz/cm^2 hit rate, radiation-hard up to 1 Grad, Shunt-LDO for serial powering

TBPX 1x2

TBPX 2x2


TFPX 1x2

TFPX 2x2

TEPX 2x2

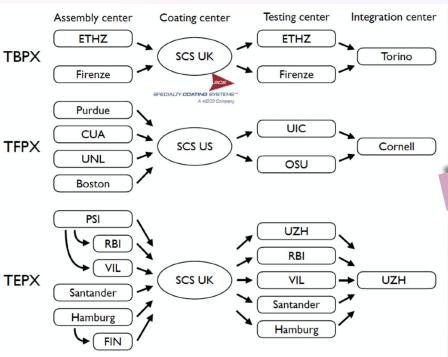
TBPX Modules

- 3D Dual (2 ROCs and 2 sensors)
- Planar Dual (2 ROCs and 1 sensor)
- Planar Quad (4 ROCs and 1 sensor)

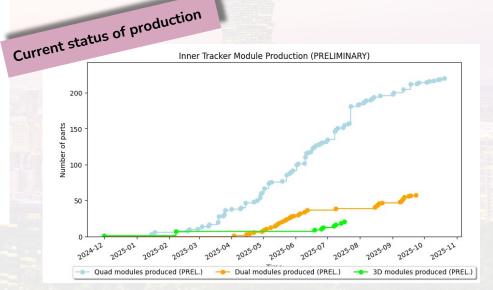
TFPX Modules

- Planar Dual
- Planar Quad

TEPX Modules


Planar Quad

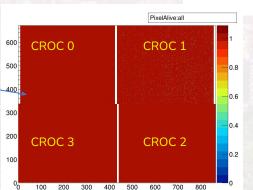
Inner Tracker Module Production Status



- Poster by Chin-Chia Kuo
 - Details of IT module production and QC workflow: CMS Phase-2 Inner Tracker for the HL-LHC Upgrade

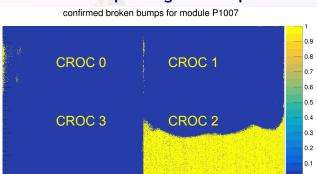
- Module assembly and testing distributed > 10 institutes
- In total 3892 modules required for installation in CMS.
 More than 6000 modules are planned
- Currently in pre-production -> production will be launched soon

Inner Tracker Module Quality Control


Electrical tests and Visual inspection during assembly

- SLDO tests (input, digital and analogue voltages of ROC)
- Sensor I/V curves
- Threshold tuning and Pixel scans (dead & inactive pixels)
- Bump connectivity -> Crosstalk measurements
- Thermal cycling (BURN-IN Test): At least 10 thermal cycles within a temperature range of −35 °C to +40 °C.

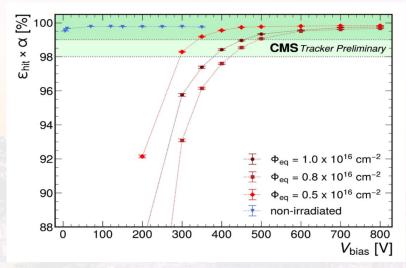
Major issues observed and under investigation:

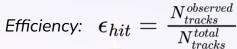

- Broken bump-bonds
 (non optimal bonding jigs)
- Core column issues

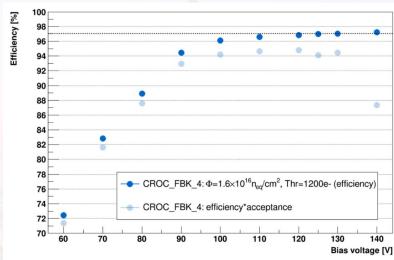
Coated modules are currently undergoing full performance QC to evaluate their quality

Microscope image of bump bonds

QC frameworks for automated testing, grading, and database integration are established and under further development


Inner Tracker Modules Irradiation Tests




Acceptance:
$$lpha=1-rac{N_{pixels}^{masked}}{N_{pixels}^{total}}$$

Planar Sensors

- Fluence: from $0.5 \times 10^{16} n_{eq}/cm^2 1 \times 10^{16} n_{eq}/cm^2$
- Efficiency > 99% @ 600 V (within requirements)

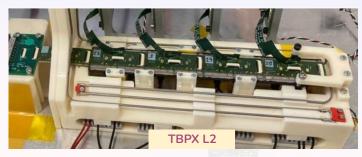
3D Sensors

arXiv:2510.13304

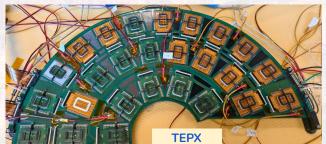
- Fluence: $1.6 \times 10^{16} \, n_{eq}/cm^2$ (replacement of layer-1 foreseen after 6 years of operation)
- Efficiency > 96% @ 110 V for normal incidence (within requirements*)

* 3Ds have geometrical inefficiency for normal incidence, because of the columns

Inner Tracker Integration - System Tests

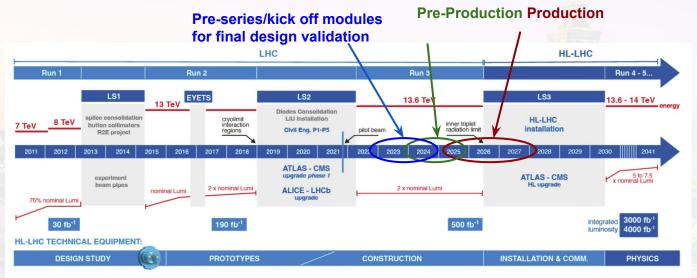


Four different setups with final integration structures:


- ✓ TBPX L2 and L3/4
- ✓ TFPX disk
- ✓ TEPX disk

- Thermal studies and simulations validation
- Mechanical studies
- LV distribution tests with serial power configuration
- HV distribution and grounding studies
- Full readout chain validation

Summary and Outlook

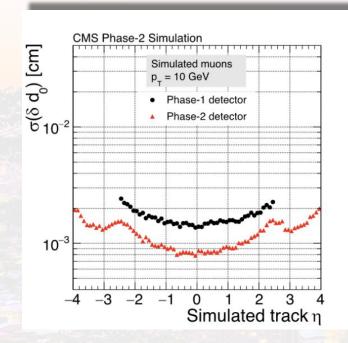


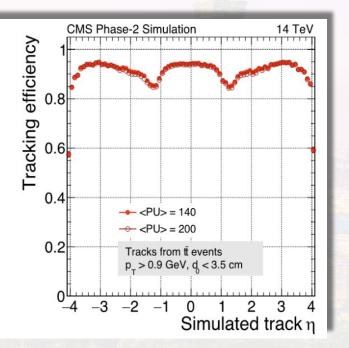
• The CMS Tracker will be fully replaced for the HL-LHC, featuring:

Extended forward acceptance ($|\eta|$ < 4), higher hit-rate capability, increased radiation tolerance, reduced material budget and track information available at Level-1 trigger

- Module production is underway for both Inner and Outer Tracker, with QA/QC workflows established and supporting scale-up production.
- Support systems (mechanical structures, powering, cooling) are in place and undergoing validation tests.
- **System integration tests are ongoing**, and the first assembled structural units are being built and evaluated as production ramps up.

CMS Phase-2 Tracker Upgrade



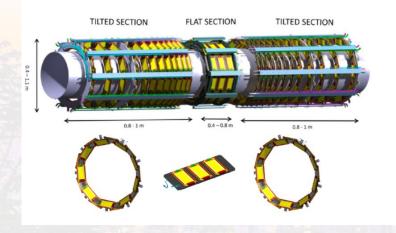


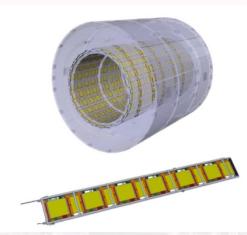
Tracking performance in Phase-2 Tracker

- Impact parameter resolution improves by about a factor of 2 compared to Phase-1.
- Tracking extended up to $|\eta| < 4$ with resolution $< 200 \ \mu m$.
- High Tracking efficiency (> 85%) even at 200 pile-up

Outer Tracker: Mechanics

TBPS

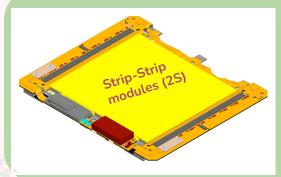

• Planks & Rings


TB2S

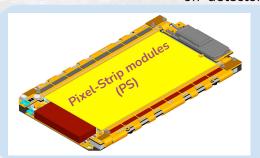
Ladders -> Cylindrical layers

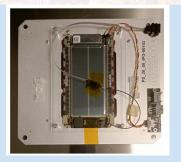
TEDD

 Double disks with dees (D shaped parts)



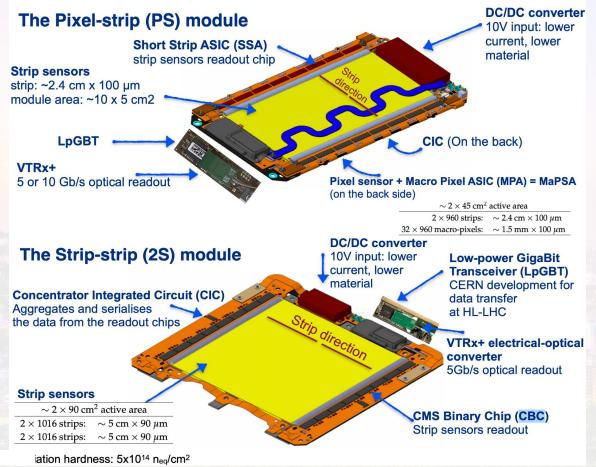
Outer Tracker Modules



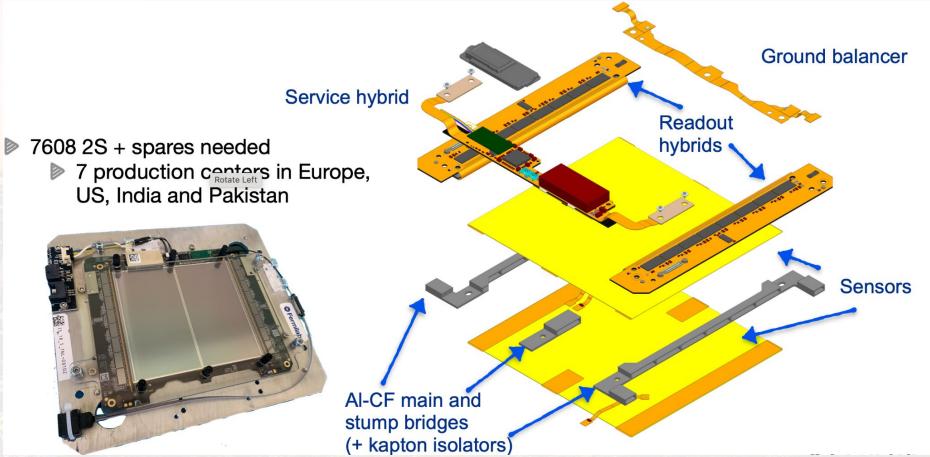

- **2 different spacings:** 1.8 & 4 mm
- **2 micro strip sensors** with 5 cm x 90 um strips
- Sensor dimension: 10cm x 10 cm: two columns of 1016 strips

- Front-end Electronics
 - CBC CMS Binary Chip (130 nm): Sensor readout and stub finding in 2S modules
 - SSA Short-Strip ASIC (65 nm): Readout of the short-strip sensor in PS modules
 - MPA Macro-Pixel ASIC (65 nm): Stub finding on the macro-pixel sensor in PS modules
 - CIC Concentrator Integrated Circuit (65 nm): Aggregates and serialises data from all modules for off-detector transmission.

- 3 different spacing: 1.6mm & 2.6mm & 4mm
- Strip sensor (2.5cm x 100µm strips) + Macro Pixel sensor (1.5 mm x 100 µm pixels)
- Sensor dimension 5cm x 10 cm (two column of 960 strips + 32x960 pixels)

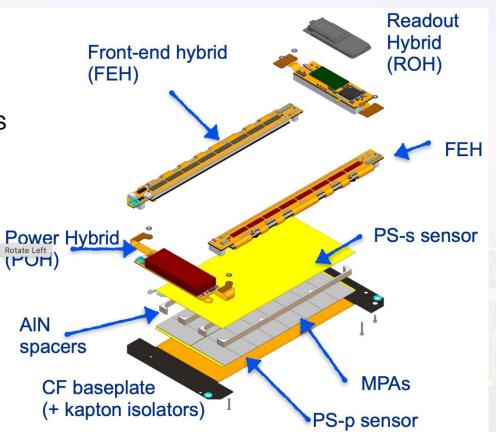


Outer Tracker Modules

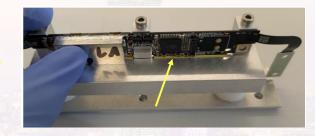


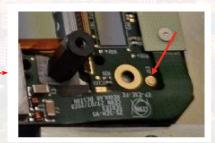
2S Module Assembly

PS Module Assembly

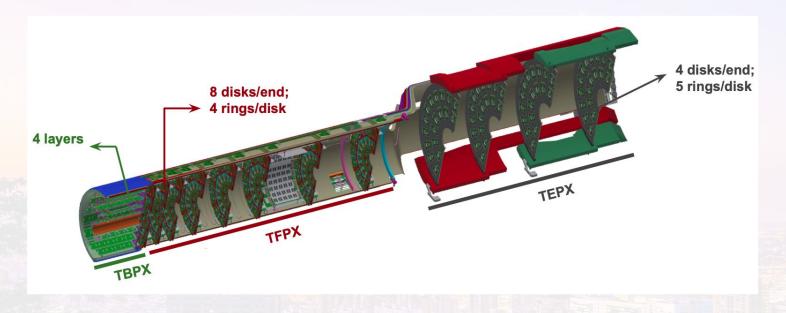


5 production centers in Europe and US


Module Production & Assembly Challenges



- Wirebond Pad Cleanliness: Residue contamination traced to spacer geometry → cleaning workflow improved and new spacer designs under evaluation.
- 1.8 mm 2S High-Voltage Sensitivity: Small sensor—stiffener spacing caused discharge and dead channels after HV tests.
 → Kapton isolation solution adopted; hybrid gluing + HV tests temporarily paused until fix applied.
- Grounding Pin Reliability (2S & PS):
 Inconsistent stiffener grounding and degradation after thermal cycling.
 - → Standardizing on soldered grounding pins for future and existing modules.



Inner Tracker Mechanics

- Light Carbon Fiber structures with embedded cooling pipes
- Flat disk geometry (replaces turbine design of Phase-1)
- Can be extracted for maintenance (during extended technical stops)

- Barrel splits in half @ z~0
- Cooling based on evaporative CO2 (T=-35°C):
 - ✓ TBPX: 1.8 mm outer diameter stainless steel pipes
 - ✓ TFPX: 3.0mm outer diameter titanium pipes
 - ✓ TEPX: 2.3mm outer diameter titanium pipes

Inner Tracker Upgrades

L 2x10³⁴cm⁻²s⁻¹ PU 40

L 5x10³⁴cm⁻²s⁻¹ PU 200

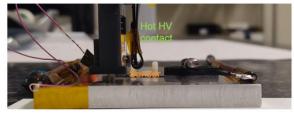
	Phase 0	Phase 1	Phase 2
Mechanics	3 layers+ 4 disks	4 layers + 6 disks	4 layers + 24 disks
Inner radius	4 cm	3 cm	3 cm
Active Si area	1 m ²	1 m ²	5m ²
Channels	66M	124M	2000M
Pixel size	100x150 μm ²	100x150 μm ²	25x100/50x50 µm ²
Radiation tolerance	100 Mrad	300 Mrad	1000 Mrad

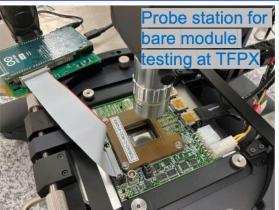
Inner Tracker Module Assembly

TBPX:

✓ Assembly with dedicated jigs

TFPX:


✓ Assembly with gantry


TEPX:

✓ Assembly with robotic arm

3Ds bare module HV testing tool

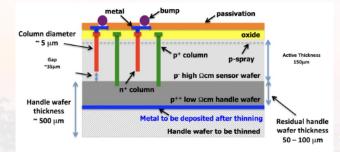
TEPX Module Assembly

HDIs and Airex frames (for mechanical stability) are glued using the a robotic arm

Module undergoes a visual inspection after assembly

A fully assembled module

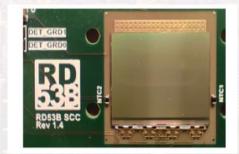
Inner Tracker Sensors and Readout Chip

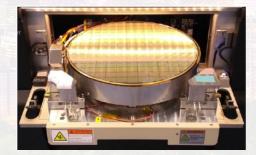


Planar Sensors:

- $25 \times 100 \, \mu \text{m}^2$ per 150 μm active thickness
- Hit efficiency >99% after 2x10¹⁶ n_{eq}/cm²

100×25 μm²



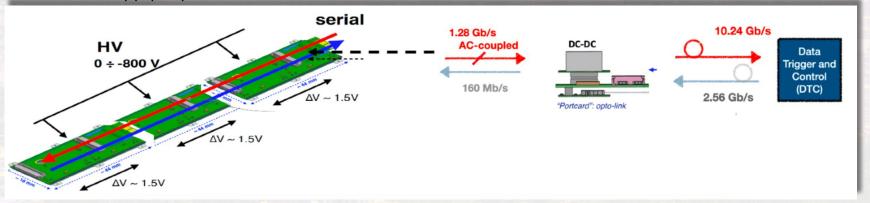

CMS Readout Chip (CROC):

- CROC 65 nm CMOS ASIC developed by joint ATLAS-CMS RD53 Collaboration (pixels: 432 x 336; size 21.6 x 18.6 mm²)
- $50 \times 50 \, \mu m^2$ cell size
- 3.2 GHz/cm² hit rate
- Radiation tolerance up to 1 Grad

3D Sensors:

- Better performances for radiation (than planar)
- Lower depletion voltage
- Hit efficiency > 98% after 1.8×10¹⁶ neg/cm²

Inner Tracker Powering and Readout



Powering scheme:

- Low material budget for a 60 kW detector power
- Modules are grouped in 576 serial power chains → Serial Powering
- Up to 11 modules/chain serially powered
 - Within each module, chips are powered in parallel->on chip shunt-LDO regulators for serial powering
 - HV supply in parallel

Readout scheme:

- Electrical ↔ optical data conversion handled on portcards (not on modules), ~700 total.
- Portcard: 3x lpGBT + VTRx+ and DC-DC converters.
- Up-links: up to $6 \times$ E-links @ 1.28 Gb/s (module \rightarrow lpGBT).
- Down-link: 1× E-link @ 160 Mb/s (clock + trigger + config).
- Optical fibers: between portcards and the Data, Trigger, and Control (DTC) boards

